Project

Residential Development at Newcastle South, Phase 1, Co. Dublin

Report Title

Infrastructure Design Report

Client

Cairn Homes Properties Ltd

SEPTEMBER 2019

Job Title:	Residential Development at Newcastle South, Phase 1, Co. Dublin.
Job Number:	170024
Report Title:	Infrastructure Design Report
Report Reference:	170024-rep-001
Author:	Noel Gorman
Approved by:	Dan Reilly
Date:	September 2019
Distribution:	Planning Client Architect Planning Consultant
	File

DBFL Consulting Engineers Ormond House Upper Ormond Quay Dublin 7

Tel01 4004000Fax01 4004050Emailinfo@dbfl.ieWebwww.dbfl.ie

Revision	Issue Date	Description	Prepared	Reviewed	Approved
*	30/10/2018	Draft	NCG	WBA	DJR
A	14/11/2018	Pre-Planning to ABP	NCG	WBA	DJR
В	11/03/2019	Pre-Planning to ABP	FNS	NCG	DJR
С	02/09/2019	Stage 3 Pack	FNS	NCG	DJR

TABLE OF CONTENTS

1.0	INTRODUCTION	.1
1.1	Background	1
1.2	Objectives	1
1.3	Location	1
1.4	Proposed Development	3
1.5	Flood Risk	4
1.6	Existing Ground Conditions	4
2.0	ACCESS AND ROADS	5
2.1	Overall Road and Access Layout	5
2.2	Green-link Cycle Infrastructure	5
2.3	Road Layout Design	6
2.4	Pavement Design Standards	6
2.5	Traffic & Transportation	6
2.6	Vehicle Tracking	6
2.7	Driveway Access	7
3.0	SURFACE WATER DRAINAGE	.8
3.1	Existing Surface Water	8
3.2	Surface Water Drainage Strategy	11
3.3	SUDS	13
3.4	Surface Attenuation Storage	14
3.5	Interception Volume	19
3.6	Design Standards	19
3.7	Drainage Ditches	20
3.8	Climate Change	21
3.9	Pluvial Flooding Provision	21
3.10) Surface Water Quality Impact	21
4.0	FOUL DRAINAGE	22
4.1	Existing Foul Drainage	22
4.2	Consultation with Irish Water	22
4.3	Design Strategy	22
4.4	Design Calculations	23
4.5	Compliance with Irish Water Standards	24
4.6	Foul Environmental Impacts	24
5.0	WATER SUPPLY AND DISTRIBUTION	25

5.1	Existing Water supply	25
5.2	Development Water Main Layout	25
5.3	Compliance with Irish Water Standards	25
5.4	Water Demand & Conservation	26

APPENDICES

Appendix A .	DRAINAGE CCTV SURVEY REPORT
Appendix B .	EXISTING ATTENUATION SYSTEMS MICRODRAINGE
	CALCULATIONS
Appendix C .	SURFACE WATER ALLOWABLE OUTFLOW
Appendix D .	SURFACE WATER ATTENUATION CALCULATIONS
Appendix E .	HR WALLINGFORD ATTENUATION CALCULATIONS
Appendix F .	SURFACE WATER NETWORK CALCULATIONS
Appendix G .	SURFACE WATER SIMULATION CALCULATIONS
Appendix H .	JBA STORMWATER DRAINAGE AUDIT REPORT
Appendix I .	DRAINAGE DITCHES CALCULATIONS
Appendix J .	FOUL SEWER CALCULATIONS
Appendix K .	IRISH WATER DESIGN ACCEPTANCE & COF
	(CONFIRMATION OF FEASIBILITY)

1.0 INTRODUCTION

1.1 Background

DBFL were commissioned to undertake an infrastructure design report to accompany a planning submission for a residential development at Newcastle, South County Dublin.

The majority of the subject site and further lands to the east which are currently developed obtained planning permission from South Dublin City Council for 743 dwellings including a neighbourhood centre and a Creche in March 2006 under application Ref. SD05A/0344. This planning permission also granted permission to construct the western section of the main spine road through the site. A planning permission extension was requested under application Ref. SD05A/0344/EP in July 2014, which was granted by SDCC in September 2014 and expired in November 2017.

This application comprises 406 residential units, 67.7m² of retail area and a crèche facility. The application also includes infrastructure comprising a road layout, cyclist infrastructure, initial phase of public park, foul, surface water and water supply services in accordance with the Newcastle Local Area Plan 2012 and South Dublin County Development Plan (2016-2022).

1.2 Objectives

This report aims to consider the proposed development main infrastructure elements, including the following;

- Road Layout/Site access including cyclist infrastructure.
- Surface water strategy and servicing.
- Foul sewer strategy and servicing.
- Water supply and servicing.
- Preliminary flood risk assessment.

1.3 Location

The subject site, of approximately 16 hectares (39.5 acres), is located to the south of the R120/Main Street at Newcastle Village. The site is bounded by residential developments of different densities to the east and north and bounded by greenfield and single dwellings to the south and west. The St Finian's National School and Church is located to the north of the site.

The development lands form part of the South Dublin County Development Plan (2016-2022). The Main Development is zoned 'to provide for new residential communities in accordance with approved planning schemes' (RES-N) and 'to preserve and provide for open space and recreational amenities' (OS). The Ballynakelly Site is zoned RES-N. The two smaller developments to the south-east of the Main Development are zoned 'to protect and/or improve residential amenity' (RES).

The Main Development Site and the Ballynakelly Site are predominantly green-field while some earthworks and site development works have been undertaken on the eastern area associated with the previously approved development. Existing boundaries within the site are predominantly hedgerows and fencing with some drainage ditches. The Ballynakelly Rise infill site is predominantly greenfield, while the Ballynakelly Edge infill site encloses an existing building intended for a change of use.

Figure 1.1 Site Location.

1.3.1 Topography

The overall topography of the Site falls from south to north toward Newcastle Village as shown in Figure 1.2. A topographical survey of the Site is provided as a background to the road layout drawings 170024-2001 and 2002.

Figure 1.2 Site Topography.

1.4 Proposed Development

The application site comprises of a main development site of approximately 15 hectares, to the south of Main Street, together with three infill sites which comprise of a 0.80ha site at Ballynakelly; a 0.18ha site at Ballynakelly Rise and a 0.05ha site at Ballynakelly Edge.

The proposed development comprises of 406 no. dwellings comprising 8 no. one-bed apartments; 20 no. two-bed apartments; 1 no. three-bed apartments; 48 no. two-bed apartments with 48 no. three bed duplex units above; 21 no. two-bed houses; 208 no. three-bed houses; and 52 no. four-bed houses.

In addition, the proposed development provides a childcare facility (518sqm) with capacity for in the order of 110 no. children to serve the needs of the proposed development and the wider community. The proposals also include 1 no. retail unit (total gross floor area 67.7sqm) at ground floor level within the Ballynakelly apartment block.

The proposed development also provides for the first phase of a new east-west link street, a continuation of Newcastle Boulevard, and a new north-south greenway linking

the Main Street to the new public park. The proposed development facilitates a number of future potential pedestrian, cycle and vehicular links to existing and proposed adjoining developments. Access to the proposed development is via a new north-south link street, with a new entrance onto Main Street, and via the existing road network from Newcastle Boulevard to the east.

A primary school site (approximately 1.5ha) has been reserved at the south-east of the application site in accordance with the Newcastle LAP 2012. A new public park is proposed (approximately 2ha) together with a range of pocket parks and greenways to serve the proposed development and the wider Newcastle community.

The proposed development provides all associated and ancillary infrastructure, landscaping, boundary treatments and development works on a total site area of approximately 16 hectares. The proposed development also provides for a temporary, single storey marketing suite and associated signage (including hoarding) during the construction phase of development only.

1.5 Flood Risk

A separate Site Specific Flood Risk Assessment has been prepared as part of the application.

1.6 Existing Ground Conditions

A detailed site investigation was undertaken by Ground Investigations Ireland in April 2018 to ascertain the existing ground conditions on the development site. The ground conditions generally consist of topsoil to a maximum depth of 400mm over sandy gravelly clays with occasional cobbles and boulders over gravel deposits. Bedrock was discovered between 3m and 11m below ground level. Made ground was discovered in two exploratory holes to maximum depth of 2.3m below ground level. A copy of the Ground Investigation Report is provided with the planning application.

2.0 ACCESS AND ROADS

2.1 Overall Road and Access Layout

The proposed development will be accessed from existing development to the east and a new priority junction on the R120, Main Street.

The main link street through the site, Newcastle Boulevard, follows a similar alignment to the Newcastle LAP, 2012 and respects the open space zoned lands to the west of the subject site. Newcastle Boulevard has been designed with a number of junctions and a meandering alignment through the development to promote traffic calming and discourage "rat running" through the development. The alignment has been tracked using vehicle tracking software for a future bus route.

The proposed carriageway is 6.5m wide with a raised adjacent cycle track on each side and intermittent parallel parking as per the Newcastle LAP, 2012. A raised table at the junction with Burgage Crescent provides a suitable transition from the existing constructed Newcastle Boulevard to the proposed DMURS link street. DBFL have agreed the link street design with South Dublin County Council's Roads Department prior to submitting the planning application.

The development's internal layout has been designed with speed reduction bends to provide traffic calming together with a combination of road vertical and horizontal deflections and forward sight visibility to reduce speeds. Flat top table ramps have been provided at strategic locations to calm traffic at junctions in particular at green-link/vehicular interfaces. Design speed limits of 30km/hr are applied throughout the development as per Design Manual for Urban Roads and Streets (DMURS).

2.2 Green-link Cycle Infrastructure

Green-link cycle infrastructure has been provided throughout the development to link existing and future schools, parks and local amenities in accordance with the Newcastle LAP 2012. Cycle infrastructure on the east/west link street has been provided as raised adjacent cycle tracks to align with the Newcastle LAP, 2012 and tie into existing cycle infrastructure to the east. The proposed north/south green-link is provided as a 4m wide shared surface for pedestrians and cyclists migrating between the various schools and amenities. This green-link is designed as an amenity route for less confident cyclists and children. The green-link has been designed to minimise the number of vehicular crossings. Where junctions and crossings are proposed, they have been designed in accordance with TII TD300 (Rural Cycleway Design Guide) and the National Cycle Manual. A signalised Toucan Crossing is proposed where the green-link crosses Newcastle Boulevard and priority junctions are proposed elsewhere.

Given the low vehicular traffic volumes within the internal local streets (<2,000 AADT), cyclists will share the road surface with vehicular traffic as per Section 1.7 of the National Cycle Manual.

2.3 Road Layout Design

The proposed development's road layout is shown on drawings 170024-2001 and 2002. Drawing number 170024-2000 outlines the road hierarchy and possible future connections. The standard road cross-sections and construction details are shown on drawings 170024-2020, 2021 & 2022 and comprise the following;

- Newcastle Boulevard providing 6.5m carriageway, 2m raised adjacent cycle tracks and 2.0m wide footways on each side with intermittent parallel parking bays as per Newcastle LAP, 2012. A 750mm buffer zone is provided between parking bays and cycle tracks as per the requirements of the National Cycle Manual.
- Residential Local Streets typically 5m to 5.5m wide carriageway with 2m footways and intermittent 2.4m wide public parking bays.
- Shared Home-Zone Streets 4.8m to 6.0m shared surface with different colour contrast and texture to Local Street (no footpaths).

Maximum road corner radii of 4.5m are provided within the local streets and 6m on the main access road as per DMURS and the requirements of South Dublin County Council.

2.4 Pavement Design Standards

The main internal access roads are designed in accordance with the Design Manual for Urban Roads and Streets (DMURS) and Local Authority requirements. Refer to drawing 170024-2020 for the proposed road construction thicknesses based on an assumed existing ground minimum design CBR of 3%. Actual CBRs and ground conditions will be confirmed by detailed site investigations prior to construction.

2.5 Traffic & Transportation

A separate Traffic and Transportation Assessment has been prepared as part of this application and is included in the overall planning pack.

2.6 Vehicle Tracking

The proposed development has been tracked to show that the development's proposed turning heads will accommodate a large refuse vehicle as shown on drawings 170024-2001 and 2002.

2.7 Driveway Access

Access driveways are set to accommodate a targeted maximum 1:20 driveway gradient. All driveways are permeable paving within private curtilage. Entrances to driveways in public footpaths comprise drop kerbs with 150mm deep concrete pavement.

3.0 SURFACE WATER DRAINAGE

3.1 Existing Surface Water

The existing site is predominantly greenfield and the topography of the site generally falls to the north towards the R120 road through Newcastle Village. A network of existing drainage ditches currently drain the site. The following drainage infrastructure has been constructed on the eastern area of the site as part of the previously approved development:

Phase 1 (Main Development Site):

DBFL commissioned a manhole survey to confirm the 375mm diameter surface water outfall for Phase 1 has been constructed into the site from the R120 Main Street. This 375mm diameter surface water sewer outfalls to a 525mm surface water on the R120 which ultimately discharges to the Shinkeen River.

Ballynakelly Site (Infill Area C1):

The Ballynakelly Site to the east of Main Development Site benefits from core infrastructure constructed under the previously permitted development (Reg. Ref. SD05A/0344). Surface water sewers have been constructed in the roads surrounding the site and have been surveyed to confirm levels and diameters. Under Reg. Ref. SD05A/0344 a 609m³ attenuation tank (attenuation 3) was proposed to serve the Ballynakelly catchment.

DBFL have undertaken a check on the adequacy of the existing attenuation volume provided as follows:

- a) DBFL commissioned a CCTV survey of the constructed tank to confirm its size and condition. The CCTV report confirms the concrete tank is in very good condition and its approximate dimensions are 25m x 20m x 1.5m which equates to greater than 609m³. A copy of the CCTV survey report is provided in Appendix A.
- b) The catchment area for the attenuation facility under Reg. Ref. SD05A/0344 was approximately 2.2ha as shown in Figure 3.1 below.
- c) Approximately 0.5ha of the western area of the catchment has now been included in the catchment area for proposed attenuation facility 1A as shown in Figure 3.1 below.

Figure 3.1 – Ballynakelly Site - Existing Attenuation Catchment

- d) DBFL have prepared a Microdrainage Source Control model of the existing attenuation tank. The impermeable area was calculated using an overall runoff coefficient of 60% (conservative) for the revised catchment area (1.7ha) shown above.
- e) The drainage design under Reg. Ref. SD05A/0344 was based on an allowable outflow of 6l/s/ha and it was noted on the planning documentation that this was a requirement of South Dublin County Council. Therefore an allowable outflow of 10.2l/s (1.7ha x 6l/s) was utilised in the model for this catchment.
- f) The required storage volume is 429m³ while the attenuation volume provided is 609m³.

The above calculation and investigation clearly demonstrates the existing attenuation facility at the Ballynakelly Site is adequately sized to accommodate the proposed infill site. Refer to Appendix B for calculations.

Ballynakelly Rise (Infill Area C2):

The proposed infill site at Ballynakelly Rise to the east of Phase 1 benefits from core infrastructure constructed under the previously permitted development (Reg. Ref. SD05A/0344). Surface water sewers have been constructed in the roads surrounding the site and have been surveyed to confirm levels and diameters. Under Reg. Ref. SD05A/0344 two attenuation facilities were proposed to provide 1538m³ of storage including oversized pipes to serve catchment 2 as shown below in Figure 3.3.

DBFL have undertaken a high level check on the adequacy of the existing attenuation volume to accommodate the proposed 7 no. housing units. It should be noted that the original drainage design under Reg. Ref. SD05A/0344 included the infill site in the calculations.

- a) An estimate of the developed catchment area is 8ha, see Figure 3.2 below.
- b) DBFL have prepared a Microdrainage source control model of the existing attenuation volume. The impermeable area was calculated using an overall run-off coefficient of 50% (conservative as development less dense than Catchment 3) for the catchment area.
- c) Similar to catchment 3 above, the allowable outflow of the original drainage design was based on 6l/s/ha. Therefore an allowable outflow of 48 l/s (8ha x 6l/s) was utilised in the model for this catchment.
- d) The required storage volume is 1529m³ while the attenuation volume provided is 1538m³.

Figure 3.2 – Ballynakelly Rise - Existing Catchment

Figure 3.3 – Ballynakelly Rise - Existing Attenuation

The above calculation and investigation clearly demonstrates the existing attenuation facility at Ballynakelly adjacent to the Rathcoole Road is adequately sized for the proposed infill site (7 units). Refer to Appendix B for calculations.

Ballynakelly Edge (Infill Area C3):

The proposed works at Ballynakelly Edge are for a change of use to an existing building therefore, there will be no increased surface water run-off from the existing building and no alterations are proposed to the existing surface water network.

3.2 Surface Water Drainage Strategy

3.2.1 General

An overall surface water drainage strategy has been developed by DBFL Consulting Engineers for the overall development site including future residential development. This strategy is shown on drawing number 170024-3020 which outlines each catchment and its corresponding attenuation facility. Surface water runoff from the development will be attenuated to greenfield runoff rates (Qbar) in accordance with the Greater Dublin Strategic Drainage Study (GDSDS).

Storms up to the 30 year critical storm will be stored in underground geocellular attenuation systems. Shallow detention basins will be used to store surface water for

storms between the 30 year and the 100 year critical storms. This strategy has been agreed with SDCC at part of the Stage 1 and 2 SHD planning process. The detention basins will be incorporated into the landscape plan with gently sloping side slopes and the max open water depth in the detention basins will be 600mm in the 100 year critical storm. This arrangement ensures that the detention basins remain dry and usable during most rainfall events, with the detention basins only utilised during extreme events. Typical construction details are shown on drawings 170024-3021, 3022 and 3023.

The surface water drainage system will collect storm-water run-off generated from the proposed residential development using traditional pipe-work and manholes laid along the main access roads collecting run-off from impermeable road surfaces via gullies and adjoining areas. Swales will be utilised as a SuDs measure where possible to drain adjacent roads and greenlinks. Swales and other SuDs measures have been incorporated into the drainage design to reduce the run-off volume and improve run-off water quality as described in Section 3.3 below.

3.2.2 Compliance with Surface Water Policy

Surface water management for the proposed development is designed to comply with the Greater Dublin Strategic Drainage Study (GDSDS) policies and guidelines and the requirements of South Dublin County Council. The guidelines require the following four main criteria to be provided by the development's surface water design;

- Criterion 1: River Water Quality Protection satisfied by providing interception storage using permeable paving in driveways, greenroofs, treatment of run-off within the SUDS features e.g. permeable paving for driveways/parking bays, swales and within the attenuation storage system and oil separators on the main surface water outfalls from the development.
- Criterion 2: River Regime Protection satisfied by attenuating run-off with flow control devices prior to discharge to the outfall.
- Criterion 3: Level of Service (flooding) for the site satisfied by the Site being outside the 1000 year coastal and fluvial flood zones, (See Flood Risk Assessment). Pluvial flood risk addressed by development designed to accommodate a 100 year storm as per GDSDS. Planned flood routing for storms greater than 100 year level, considered in design, the development has been designed to provide an overland flood route from the development towards the surface water outfall.
- Criterion 4: River flood protection attenuation and long term storage provided within the SUDS features e.g. permeable paving construction, swales and attenuation facility.

3.2.3 Ground Investigation

Preliminary site investigation was undertaken on the Subject Site which included trial pits, boreholes and Infiltration tests. Topsoil over clays over gravel was encountered with bedrock discovered between 3 and 11m below ground level. Infiltration tests in accordance with BRE Digest 365 were carried out at 6 locations on site. The results indicated negligible soakage rates therefore no benefit was taken from infiltration in the design of the attenuation facilities although some infiltration will naturally occur.

3.3 SUDS

In accordance with the GDSDS it is proposed to use Sustainable Urban Drainage systems (SUDS) for managing storm-water for the proposed development. The aim of the SUDS strategy for the site will be to;

- Attenuate storm-water runoff.
- Reduce storm-water runoff.
- Reduce pollution impact.
- Replicate the natural characteristics of rainfall runoff for the site.
- Recharge the groundwater profile

The proposed layout of the drainage and SUDS is detailed on drawings 170024-3001, 3002 and 3003.

An assessment of the potential SuDS that could be incorporated within the site was conducted using the SuDS Manual, CIRIA 753. The SuDS elements which were found applicable to the proposed scheme design and layout include the following:

- 1. Permeable paving driveways for all on-curtilage driveways
- 2. Greenlinks to drain to swales for reduction and treatment of run-off
- 3. The attenuation storage systems will be an on-line system for treatment of runoff. The storage systems will be designed to maximise water quality.
- 4. Down pipes from roof surfaces diverted into driveway permeable paving to allow infiltration of run-off from roofs.
- 5. Green roof at Creche building
- 6. A petrol interceptor to be provided before the outfall from the Subject Site.

The incorporation of the above SuDS elements will provide a sustainable manner in which to disperse surface water from the site, encourage groundwater recharge and provide treatment of run-off and subsequent improvement of discharge quality.

3.4 Surface Attenuation Storage

Surface water run-off from the overall Newcastle South development lands (subject site, future phases and zoned lands as outlined on drawing number 170024-3020) will be attenuated to greenfield runoff rates (Qbar). This is calculated as 52.00/s using the Institute of Hydrology equation as recommended in the Greater Dublin Strategic drainage Study (GDSDS) based on an area of 24.58Ha. This area is within the catchment of the new drainage networks and excludes open space areas not within new drainage networks. The overall catchment and a catchment plan strategy is shown on drawing number 170024-3020.

Catchments 1A, 1B and 1C within the subject site accounts for 46% of the overall site and will therefore be attenuated to 24.06l/s. Refer to figure 3.4 below for indicative overall catchments areas.

Figure 3.4 – Indicate overall catchment areas

A land drain has been included to the south of the development to intercept any overland flow from the south and will drain to existing field ditches to match the greenfield scenario therefore it is not included in the above calculation. As outlined on drawing number 170024-3020, a section of the future school site (Catchment 1E) to the south of the interceptor drain is included in Catchment 1A for the calculation of the greenfield run-off rate. The reason for including this is because greenfield run-off from this area may enter

the Catchment 1A drainage network in extreme events. This area is to be attenuated within its own catchment if developed in the future.

Catchment 1D (Future Commercial Site) and Catchment 1E (Future School Site) will be attenuated within their own catchments and their attenuated outflows, 1.78l/s and 1.59l/s respectively have been accommodated in the drainage design.

Refer to Appendix C for detailed calculations.

Soil Type 2 has been used to calculate Qbar and the attenuation storage. The SOIL value was selected using Table 4.5 of the Flood Studies report – The Classification of Soils from Winter Rainfall Acceptance with the following criteria:

Drainage Group	2 - Commonly waterlogged within 60cm
Depth to impermeable layer	2 - 80-40cm
Permeability group (above 'impermeable' layers or to 80cm)	2 - Medium
Slope	1 – 0 -2°

Table 3.2 The classification of soils by winter rain acceptance rate from soil survey data

This is based on the detailed site investigation undertaken by Ground Investigations Ireland. It was noted in the Stormwater Audit undertaken by JBA Consulting that the use of SOIL type 2 is a conservative approach as the ground conditions suggests the use of SOIL type 3 would be acceptable. Use of SOIL type 3 would result in smaller attenuation systems and a greater outflow rate from the site therefore reducing the protection to downstream drainage infrastructure.

Run-off from the proposed development will be limited/attenuated using vortex flow control devices (Hydrobrake or equivalent) at each outfall limiting discharge to greenfield runoff rates (Q_{bar}) in accordance with the GDSDS for the total area of the site within the catchment of the new drainage networks.

The resultant design attenuation volumes, discharge limits, types of storage and storage volumes for each catchment are summarised in Table 3.1 (See Appendix D for detailed calculations).

Catchment	Catchment Area (m²)	Storage System Type	Calculated Allowable Outflow (I/s)	Storage Volume Required (m ³) (100 years) calculated using Microdrainage	Storage Volume Required (m ³) (100 years) calculated using HR Wallingford	Storage Volume Provided (m ³) (100 years)
1A	59,315	Detention Basin & Geocellul ar	12.55	1,260	1,218	1,295
1B	26,265	Detention Basin & Geocellul ar	5.56	1,014	926	1,155
1C	28,142	Detention Basin & Geocellul ar & Stormtech	5.95	600	664	614
Ballynakelly In-fill Sites	Attenuation constructed under Reg. Ref SD05A/0344					
Total	113,722		24.06	2,874	2,808	3,064

Table 3.3 – Surface Water Attenuation Storage and Discharge Limits

DBFL met with South Dublin County Council Drainage Department on the 09/01/2019, 21/01/2019 and 11/07/2019 to discuss differences in calculated attenuation volumes as highlighted at An Bord Pleanála tripartite meeting on the 07/01/2019. There is general agreement between DBFL and South Dublin County Council on the calculation of Qbar (the allowable outflow rate) and the calculation of the drained areas and run-off coefficients.

As highlighted at the above meetings, DBFL have calculated the attenuation volumes using Microdrainage as shown in Table 3.3 above, the following should be noted in relation to Microdrainage:

- Micro Drainage is the industry standard drainage design suite in the UK and Ireland for the last 30 years. Microdrainage is used by the majority of engineering consultancies and is the most recognised drainage calculation method by local authorities.
- Microdrainage models the variable head/ discharge relationship of the hydrobrake and models the actual tank shape
- Microdrainage models the time of concentration the time needed for water to flow from the most remote point in the drainage network to the tank. This becomes significant in large sites such as the subject site.
- The M5-60 and r value (M5-60:M5-2Day) are sourced from Met Eireann and inputted to Microdrainage. The inflow hydrograph for each storm is then calculated by Microdrainage using the Flood Studies Report method as recommended by Section 6.4 of the GDSDS.
- Microdrainage uses the unit hydrograph method at 2min intervals to model the storm, i.e. it models the flow into the system and flow out of the system every 2 minutes for all storm events (38 storm events). Therefore it can accurately calculate the maximum storage volume required in the system for the critical storm.

To complete a sensitivity check on the attenuation volumes DBFL have also consulted with the HR Wallingford online surface water storage volume estimation tool (<u>http://www.uksuds.com/</u>). HR Wallingford was originally the Hydraulic Research Station of the UK Government and became a private entity in 1982 and have since operated as an independent, non-profit distributing organisation in hydraulics and water management. HR Wallingford storage volumes are shown in Table 3.3 above and the results sourced from the sizing tool are provided in Appendix E. The values show excellent correlation between the Micodrainage (UK & Ireland industry standard

software) and the HR Wallingford online estimation tool (Internationally recognised Hydraulics research institution).

It appears from the above meetings with South Dublin County Council that the main difference in attenuation storage calculation / sizing is the following:

- SDCC do not use the Flood Studies Report method (as required by GDSDS Section 6.4) to calculate the rainfall input hydrograph for each storm.
- SDCC are using a spreadsheet method to calculate storage volumes as opposed to Microsimulation Methods. A basic spreadsheet will not take account of varying times of concentration for large catchments, the variable head/ discharge relationship of the hydrobrake or the actual tank shape. Under Section 6.4 of the GDSDS it notes that "The design of a storm sewer network and determining its performance requires the use of network modelling tools, rainfall information based on the Flood Studies Report (FSR) and detailed network and ground information."
- SDCC are sourcing rainfall data for long duration 100 year storm events from Met Eireann data as opposed to the Flood Studies Report Method. The Met Eireann data is not referred to in the GDSDS and is based on a depth duration frequency model.

In total approximately 3064m³ of storm-water storage is provided within the attenuation facilities for the subject site. This is 190m³ higher than the volumes calculated using Microdrainage and HR Wallingford.

Notwithstanding the above sensitivity check, the applicant commissioned JBA Consulting to undertake a third party surface water audit on the proposed surface water drainage and attenuation strategy for the development. JBA Consulting specialise in hydraulics and hydrology and have undertaken a number of the regional flood risk management studies for the OPW. The appointment of JBA Consulting was agreed with South Dublin County Council in advance of the audit taking place.

The final audit report concludes that the surface water drainage design for the proposed development is acceptable and meets the requirements of the GDSDS, a copy of the report is included in Appendix H.

Typical details and cross-sections of the proposed surface water attenuation facilities are provided on drawings 170024-3021,3022 & 3022. Details of the "in curtilage" SUDS proposed includes the permeable driveways with stone reservoirs below as shown on drawing 170024-3018.

3.5 Interception Volume

To prevent pollutants or sediments discharging into water courses the GDSDS requires "interception storage" to be incorporated into the development. This interception storage is designed to receive the run-off for rainfall depths of 5mm up to 10mm if possible. The SUDS features including permeable driveways and "open bottom" attenuation facilities will provide the necessary interception volume required by the GDSDS.

3.6 Design Standards

.

Drainage is designed in accordance with the Greater Dublin Regional Code of Practice for Drainage Works. Surface water pipe-work was sized using the Microdrainage Windes drainage modelling software. The following parameters apply to the design:

•	Return period for pipe work	2 years,
---	-----------------------------	----------

check 30 year 15 minute, no flooding.

check 100 year 15 minute, flooding in designated areas.

- Time of entry 4 minutes
- Discharge Limit 25.65 l/s @ 100 years for subject site
- Pipe Friction (Ks)
 0.6 mm
- Minimum Velocity 1.0 m/s
- Standard Average Annual Rainfall 795mm (Met Eireann 1km² grid)
 - M5-60 17.7mm (Met Eireann)
- Ratio r (M5-60/M5-2D) 0.271 (Met Eireann)
- Attenuation Tank Storm Return Event GDSDS Volume 2, p61, Criterion 3

30 year no flooding on site.

100 year check no internal property flooding. Flood routing plan. FFL freeboard above 100 year flood level. No flooding to adjacent areas.

- Climate Change Allowance 10%
- Factor of Safety for infiltration 2.0
- Runoff from Roads and Footpaths 100%
- Runoff from houses draining direct to SW network: 100%

- Runoff from houses draining to permeable paving: 80%
- Runoff from green roofs: 80%
- Runoff from Roads, footpaths & Green-links draining to swales 80%
- Runoff from Permeable Paving Driveways 75%
- Runoff from Open Grassed Areas 15%

Surface water sewers have been designed in accordance with IS EN 752 and the recommendations of the 'Greater Dublin Strategic Drainage Study', (GDSDS).

Standard drainage details, as outlined on DBFL drawings 170024-3015 to 3017, are in accordance with the Greater Dublin Regional Code of Practice for Drainage Works.

The minimum pipe diameter for public surface water sewers is 225mm. Private drains within the proposed development will be 100mm as outlined on DBFL drawing 170024-3018.

Refer to drawings 170024-3001, 3002 and 3003 for the proposed surface water layout.

Surface water sewer modelling results for the main drainage networks is included in Appendix F. The surface water drainage network simulation results are included in Appendix G which demonstrate that stormwater is contained below ground and within the open detention basins for the 100 year critical storm.

3.7 Drainage Ditches

A network of drainage ditches exist within the existing hedgerows on the subject site. In general it is proposed to maintain these drainage ditches and incorporate them into the proposed development. Drainage ditch culverts are required where roads cross the existing ditches.

DBFL undertook a catchment analysis upstream of the proposed culverts using the Institute of Hydrology (IOH) formula for small catchments less than 25km². The flow for the 1% AEP event was calculated as 0.1m³/s. This flow was also multiplied by the Standard Factorial Error (1.65) for the IOH formula factored up by 20% for climate change. The resulting design flow for the culverts sizing was calculated as 0.2m³/s. It should be noted that these drainage ditches were observed to be dry during site visits in Spring 2018 and Autumn 2018.

The culverts are designed as two 450mm pipes to reduce the depth of the ditch and has a capacity of $0.6m^{3}/s$.

It is also proposed to drain any greenfield runoff from the park (initial and future phases) to the south of the development into the existing drainage ditches. The additional

catchment area is approximately 4ha. Using the Institute of Hydrology (IOH) formula for small catchments less than 25km². The flow for the 1% AEP event was calculated as 0.04m³/s. This flow was also multiplied by the Standard Factorial Error (1.65) for the IOH formula factored up by 20% for climate change. The existing drainage ditch and proposed culvert have adequate capacity to convey the additional 0.04m³/s in the 100 year storm event.

Refer to Appendix I for design calculations.

3.8 Climate Change

Rainfall values for the proposed development are sourced from Met Eireann to calculate the FSR input hydrograph for the drainage design as required by the GDSDS. The design rainfall intensities were increased by a factor of 10% to take account of climate change, as required by the GDSDS for attenuation storage design.

3.9 Pluvial Flooding Provision

The surface water network, attenuation storage and site levels are designed to accommodate a 100 year storm event and includes climate change provision. Floor levels of houses are set above the 100 year flood levels by a minimum of 0.5m for protection. For storms in excess of 100 years, the development has been designed to provide overland flood routes along the various development roads towards the surface water drainage outfall. Refer to DBFL's Site Specific Flood Risk Assessment for further details.

3.10 Surface Water Quality Impact

Run-off rates from the site are controlled by vortex flow control devices. Surface water management proposals for the development also incorporate the following to reduce its impact;

- Designed in accordance with GDSDS requirements;
- Incorporates SUDS features e.g. permeable paving in high risk parking areas at the front of houses;
- On-line attenuation/infiltration facilities with an oil separator prior to discharge to a public surface water sewer.

4.0 FOUL DRAINAGE

4.1 Existing Foul Drainage

The existing site is predominantly greenfield and therefore has no foul loading at present. There is an existing 225mm diameter foul sewer on Main Street (R120) to the north of the site. According to records, this foul sewer connects to a 525mm foul sewer on Aylmer Road which ultimately outfalls to Newcastle Pump Station.

The Ballynakelly Site benefits from core infrastructure constructed under the previously permitted development (Reg. Ref. SD05A/0344). A 225mm diameter foul sewer spur has been constructed into the Ballynakelly Site. The existing foul sewers are shown on drawings 170024-3001 to 3002.

4.2 Consultation with Irish Water

An Irish Water Pre-Connection Enquiry form has been submitted to Irish Water and an Irish Water Feedback form has been received outlining that a Wastewater connection can be facilitated for the proposed development. Refer to Appendix K for a copy of the feedback form. The feedback letter also states a number of upgrades are required to the existing network including Newcastle Pump Station.

DBFL met with Irish Water on the 13th July 2018 to discuss the upgrades. Irish Water propose to upgrade the existing foul sewer on the R120 and Aylmer Road to a 375mm diameter foul sewer to alleviate the network constraints on Main Street.

The constraints at Newcastle Pump Station were also discussed at the meeting, it was noted by Irish Water that this constraint is not currently on the Irish Water Capital Investment plan but the constraints are assumed to be minor in nature. DBFL on behalf of Cairn Homes Properties Ltd have requested Irish Water to undertake an investigation into this constraint as part of a Project Works Service Agreement (PWSA). Any upgrade works required to Newcastle Pump Station can be agreed as part of a connection agreement with Irish Water.

Infiltration issues in the existing foul network in Newcastle were highlighted by South Dublin County Council Drainage Department at the An Bord Pleanála tripartite meeting on the 07/01/2019. DBFL subsequently followed up with Irish Water and it was noted by Irish Water that the infiltration issue does not affect the subject site.

4.3 Design Strategy

The proposed foul drainage system for the subject site will connect to the existing 525mm diameter foul sewer on Aylmer road via a new 375mm diameter foul sewer. This 375mm diameter foul sewer is proposed by Irish Water as part of the Local Network

Reinforcement Project for Newcastle. This foul sewer will be delivered in conjunction with Irish Water as part of the connection agreement for the subject site.

It is proposed to connect the proposed foul sewer for the Ballynakelly infill site (Area C1) to the existing 225mm diameter foul sewer along Burgage Crescent constructed under the previously permitted development (Reg. Ref. SD05A/0344).

It is proposed to connect the seven housing units at Ballynakelly Rise infill site (Area C2) to the existing 300mm diameter foul sewer along Ballynakelly Rise constructed under the previously permitted development (Reg. Ref. SD05A/0344).

It is proposed to use the existing foul sewer connection to the existing building at Ballynakelly Edge (Area C3).

Individual houses will connect to the 225mm diameter foul drains via individual 100mm diameter house connections, as per Irish Water Code of Practice for Wastewater Infrastructure.

4.4 Design Calculations

Foul sewers have been designed in accordance with the Building Regulations and specifically in accordance with the principles and methods set out in the Irish Water Code of Practice, IS EN752 (2008), IS EN12056: Part 2 (2000) and the recommendations of the 'Greater Dublin Strategic Drainage Study', (GDSDS).

The following criteria have been applied:

Demand	446l/dwelling/day (based on 2.7 persons per house, a			
	per capita wastewater flow of 150 litres per head per			
	day and a 10% allowance for infiltration)			
	60l per person per day for Créche			
	50I per person per day for Retail			
Discharge units	14 units per house (as BS8301)			
Pipe Friction (Ks)	1.5 mm			
Minimum Velocity	0.75 m/s (self-cleansing velocity)			
Maximum Velocity	2.5 m/s			
Frequency Factor	0.5 for domestic use			
Manhole Depths	< 5.0m			

Foul sewer design calculations from Windes are provided in Appendix J.

All foul sewers and manholes will be constructed in accordance with the Irish Water Standard Details and the Irish Water Code of Practice for Wastewater. Longitudinal sections for the proposed foul sewers are detailed on drawings 170024-3025 to 3028.

4.5 Compliance with Irish Water Standards

The proposed foul sewer design and layout is in accordance with the Irish Water Code of Practice for Wastewater Infrastructure and The Irish Water Wastewater Infrastructure Standard Details. DBFL have engaged with Irish Water subsequent to the tripartite meeting and have received a Statement of Design Acceptance from Irish Water which is included in Appendix K.

4.6 Foul Environmental Impacts

This application comprises 406 residential units, 67.7m² of retail area and one crèche. The development will discharge to the existing Newcastle Pumping Station which pumps foul water to a gravity sewer at the Rathcoole Interchange which ultimately discharges to Ringsend waste water treatment works. The estimated average daily load from the development is 190m³ with a total average BOD loading of 32 Kg per day. See below for calculations.

PREDICTED DEVELOPMENT FOUL FLOWS						
Use Type	No. of Units / Area	Occupancy Rate	Populatio n (P)	Loading (G) (I/day/person) *	Daily Loading (PG) (I/day)	Daily Loading (I/s)
Residential	406	2.7 people/ dwelling	1096	150	164,400	1.90
Créche	1	132	132	60	7,920	0.09
Retail	67.7m ²	1 person/18m ²	4	50	200	0.002
				Tota	I Loading (I/s)	1.99
					Growth Factor	1
			Infiltrati	on @ 10% (as Co	р Арр С 1.2.4)	0.2
Dry Weather Flow I/s					2.19	
Residential Peaking factor (as CoP App C 1.2.5)					6	
Residential Design Foul Flow (I/s)					13.14	
*Flow rates calculated using IW CoP for Wastewater Infrastructure Appendix C						

Table 4.1 – Development Foul Flow Calculations

5.0 WATER SUPPLY AND DISTRIBUTION

5.1 Existing Water supply

A 450mm watermain was laid along Newcastle Boulevard as part of the previously permitted development (Reg. Ref. SD05A/0344). There is a 160mm diameter watermain along Burgage Cresent to the east of the site and a 100mm and 150mm watermain along the L6001 to the west of the subject site.

5.2 Development Water Main Layout

The development's proposed water-main distribution system is shown on drawings 170024-3011 and 3012. DBFL Consulting Engineers met with Irish Water on the 13th July 2018 to discuss the watermain layout. It was noted by Irish Water that there is no requirement to extend the existing 450mm diameter watermain along Newcastle Boulevard. Therefore it is proposed to construct a new 250mm diameter watermain along Newcastle Boulevard and connect it to the existing 450mm diameter watermain at a new pressure reducing valve. This 250mm diameter watermain will be constructed to the Phase 1 western boundary where it can be extended as part of future development phases to the west. Two connections including pressure reducing valves will be made to the new 250mm watermain which will serve a number of 150mm diameter watermain loops throughout the development. A number of 100mm watermain loops will be fed from the 150mm watermains along the Local Streets.

The connection to the public water main will include a metered connection with sluice valve arrangement in accordance with the requirements of Irish Water.

The selected pipe material options for the development will be PE-100.

Individual houses will have their own connections to the distribution main via service connections and boundary boxes. Individual service boundary boxes will be of the type to suit Irish Water and to facilitate domestic meter installation.

Hydrants are provided for fire-fighting at locations to ensure that each dwelling is within the required Building Regulations distance of a hydrant.

5.3 Compliance with Irish Water Standards

The proposed watermain design and layout is in accordance with the Irish Water Code of Practice for Water Infrastructure and The Irish Water, Water Infrastructure Standard Details. DBFL have engaged with Irish Water between the subsequent to the tripartite meeting and have received a Statement of Design Acceptance from Irish Water which is included in Appendix K.

5.4 Water Demand & Conservation

The average daily domestic demand (ADDD) for the proposed development is approximately 173m³ and an average day / peak week demand of 216m³ has been calculated as outlined in the Irish Water Code of Practice for Water Infrastructure.

The average water demand is estimated to be 2l/s. The peak demand for sizing of the pipe network (5 times the average day, peak week demand) is calculated as 12.48 l/s. See calculations below in Table 5.1.

An Irish Water Pre-Connection Enquiry form has been submitted to Irish Water and an Irish Water Feedback form has been received outlining that a Watermain connection is possible for the proposed development without Infrastructure upgrades. Refer to Appendix K for a copy of the feedback form.

WATER DEMAND							
Use Type	No. of units / Area	Occupancy Rate	Population (P)	Average daily domestic demand (I/day)	Average daily domestic demand (I/s)	Average day/peak week demand (I/s)	Peak hour water demand (I/s)
Residential	406	2.7 per dwelling	1,094	164,400	1.90	2.38	11.9
Créche	1	132	132	7,920	0.09	0.113	0.57
Retail	67.7m ²	1 person/18m ²	4	200	0.002	0.003	0.015
Peak hour water demand (I/s)							
*Flow rates calculated using IW CoP for Watermains							

Table 5.1 – Development Water Demand

Appendix A

DRAINAGE CCTV SURVEY REPORT

Dyno Rod Dublin

11 York Road Ringsend Dublin, 4 Ireland

Project Name: APEX SURVEYS

Report Date: 31 May 2018

NEWCASTLE WEST, CO DUBLIN.

Dyno Rod CCTV Survey 01 513 3500 1

DYNO-ROD	Duciently	farma ak'ara	Dyno Rod Dublin 11 York Road Ringsend Dublin, 4 Ireland
Drain Cleaning, Inspection & Repair	Project Ir	nformation	
Job Number 310518	Surveyed by (Operator) ANDY	Base Unit IAWHSOYGQ9	Date 31/05/2018
Client Details:		· · ·	
APEX SURVEYS			
Site Detaile:			
NEWCASTLE WEST, CO DUBLIN.			
Contractor Details:			
Dyno Rod Dublin 11 York Road Ringsend Dublin, 4		Office Contact Name: BARRY BE Office Contact Number: 00353 01	NSON 663 0844
Ireland			
Purpose of Survey:			
,			

DYNO-ROD Drain Cleaning, Inspection & Repair	Contents Page		Dyno Rod Dublir 11 York Roac Ringsenc Dublin, 4 Irelanc	
Job Number	Surveyed by (Operator)	Base Unit	Date	
310518	ANDY	IAWHSOYGQ9	31/05/2018	

Report Contents

- Page 1 Cover Page
- Page 2 Job Overview
- Page 3 Contents Page
- Page 4 Grade Defect Descriptions
- Page 5 Site Photos
- Page 6 Survey Run Sheet(Survey 1 MH1 to L1 TANK)
- Page 8 Survey Run Sheet(Survey 2 MH1 to L2 TANK)
- Page 10 Survey Run Sheet(Survey 3 MH1 to L3 TANK)
- Page 12 Survey Run Sheet(Survey 4 MH1 to L4 TANK)
- Page 14 Survey Run Sheet(Survey 5 MH1 to L5 TANK)
- Page 16 Survey Run Sheet(Survey 6 MH1 to L6 TANK)
- Page 18 Defect Summary
- Page 20 Job Summary

Job Number	Surveyed by (Operator)	Base Unit	Date
310518	ANDY	IAWHSOYGQ9	31/05/2018
		J.	
NO DEFECTS WERE DET	ECTED.		
2: Constructional deficiencies	or occurences with insignificant ir	nfluence to tightness, hydraulic	or static pressure or pipe: Eg.
vide joints, badly torched inta	akes, minor deformation of plastic	pipes, minor erosions etc.	
REHABILITATION CAN BE	SCHEDULED LONG-TERM.		
3: Constructional deficiencies obstructions such as calcite b pipe walls etc.	s diminishing static, hydraulic and t puild ups, protruding laterals, mino	ightness: Eg. untorched intakes r damages to pipe wall, individu	s, cracks, minor drainage ial root penetrations, corroded
REHABILITATION IS NECI	ESSARY MEDIUM-TERM WITHIN	3 TO 5 YEARS.	
4: Constructional damages w deformations, visually noticea penetrations, severe corrosic	nth insufficent static safety, hydrau able infiltration/exfiltration, cavities, on of pipe wall etc.	lic or tightness: Eg. axial/radial , in pipe-wall, severe protruding	pipe bursts, pipe , laterals severe root
REHABILITATION PROCE	DURE IS URGENT AND HAS TO	BE COMPLETED WITHIN 1 TO	O 2 YEARS. NECESSITY
	ATIONS TAS TO BE EXAMINED.		
b: Pipe is already or will shore of back or back of	tly be impermeable: Eg. collapsed kwater in basements etc.	pipe, deeply rooted pipe or othe	er drainage obstructions. Pipe
REHABILITATION IS URG	ENT AND SHORT-TERM. IN ORD		DAMAGE, NECESSARY
	AITTRO TO DE COMDUCTED ON	N LIVIENGENUT LEVEL.	

Property: Front Elevation

DYNO-RO Drain Cleaning, Inspection	G Repair	CTV Inspection Rep	ort		Dyno Rod Dublin 11 York Road Ringsend Dublin, 4 Ireland
Surveyed by (Operator) ANDY	Job Number 310518	Pipe Length Reference(PLR) MH1 X	Date 31/05/2018	Pre Cleaned Flushed through to enab	
Weather 1 - Dry	Customer Present	Service Grade/Structural Grade 0/0	Base Unit IAWHSOYGQ9	S	ection Number
Road NEWCASTLE WEST, CO DU Place Location	JBLIN.	Division District Location Details			
Purpose Duty Surface water Catchment	Shape/Siz Material Category	ze 25000mm Concrete	Start MH MH1 End MH L1 TANK Total length 25.02 r	netres	
Scale 1:1.31 Direction Downstream	· ·				
M/H Ref:MH1 I/L :mm Position Code	Description			Photo	Type/Grade
0.00 ST 0.00 WL	Start of Survey Length Start node type, manhole, Water level 6% height/dian	reference MH1 neter		2565771 2565772 2565773	Comment / 0 Comment / 0 Comment / 0
ŧ					

Manhole Finish (L1 TANK)

M/H Ref:L1 TANK | I/L :mm

-25.02

MHF

M/H Ref:L2 TANK | I/L :mm

Dyno Rod Dublin 11 York Road Ringsend Dublin, 4 Ireland

CCTV Inspection Report Drain Cleaning, Inspection & Repair Pipe Length Reference(PLR) MH1 X Date 31/05/2018 Pre Cleaned Flushed through to enable Job Number 310518 Surveyed by (Operator) ANDY survey Customer Present Weather Service Grade/Structural Grade Base Unit Section Number 1 - Dry 0/0 IAWHSOYGQ9 2 Road NEWCASTLE WEST, CO DUBLIN. Division Place District Location Details Location Start MH MH1 End MH L2 TANK Total length 24.1 metres Shape/Size 25000mm Material Concrete Purpose Duty Surface water Catchment Category Scale 1:1.26 Direction Downstream M/H Ref:MH1 | I/L :mm Position Code Description Type/Grade Photo Start of Survey Length Start node type, manhole, reference MH1 2565786 0.00 ST Comment / 0 2565787 Comment / 0 -0.00 MH Water level 5% height/diameter -0.00 WL 2565788 Comment / 0 Manhole Finish (L2 TANK) 24.10 MHF 2565789 Comment / 0

Dyno Rod Dublin 11 York Road Ringsend Dublin, 4 Ireland

Drain Cleaning, Ins	pection & Repair	CCTV Insp	pection Repo	rt		Ire
Surveyed by (Operator ANDY	r) Job Numbe 310518	er Pipe Lengt	h Reference(PLR) MH1 X	Date 31/05/2018	Flushed	Pre Cleaned I through to enable survey
Weather 1 - Dry	Customer Pres	sent Service Gra	de/Structural Grade 0/0	Base Unit IAWHSOYGQ9	Se	ection Number 3
Road NEWCASTLE WEST Place Location	, CO DUBLIN.		Division District Location Details			
^{>} urpose Duty Surface water Catchment		Shape/Size 25000mm Material Concrete Category		Start MH MH1 End MH L3 TANK Total length 22.72	metres	
Scale 1:1.15 Direction Downstream		•				
I/H Ref:MH1 I/L :mm Position Coc	le Description				Photo	Type/Grade
0.00 S 0.00 M 0.00 W	T Start of Survey L H Start node type, /L Water level 5% I	ength manhole, reference MH neight/diameter	1		2565790 2565791 2565792	Comment / 0 Comment / 0 Comment / 0
22.72 M	HF Manhole Finish ((L3 TANK)			2565793	Comment / 0

Surveyed by (Operator) ANDY	310518	Pipe Length Reference(PLR) MH1 X	Date 31/05/2018	Flushed	Pre Gleaned I through to enable survey
Weather 1 - Dry	Customer Present	Service Grade/Structural Grade 0/0	Base Unit IAWHSOYGQ9	Se	ection Number 4
d NEWCASTLE WEST, CO E e tition	DUBLIN.	Division District Location Details			
ose Surface water hment	Shape/S Material Category	ze 25000mm Concrete	Start MH MH1 End MH L4 TANK Total length 23.26	metres	
e 1:1.21 tion Downstream					
ef:MH1 I/L :mm Position Code	Description			Photo	Type/Grade
0.00 ST 0.00 MH 0.00 WL	Start of Survey Length Start node type, manhole, Water level 5% height/dia	reference MH1 meter		2565794 2565795 2565797	Comment / 0 Comment / 0 Comment / 0

M/H Ref:L4 TANK | I/L :mm

23.26

MHF

Dyno Rod Dublin

Surveyed by (Operator) ANDY	Job Numbe 310518	r Pipe Length	Reference(PLR)	Date 31/05/2018	Flushed	Pre Cleaned through to enable
Weather 1 - Dry	Customer Pres	sent Service Grad	Service Grade/Structural Grade 0/0		Se	ection Number 5
d NEWCASTLE WEST, (ce ation	O DUBLIN.		Division District Location Details			
oose / Surface water chment		Shape/Size 25000mm Material Concrete Category	·	Start MH MH1 End MH L5 TANK Total length 23.28	metres	
ale 1:1.21 ection Downstream				·		
Ref:MH1 I/L :mm Position Code	Description				Photo	Type/Grade
0.00 ST 0.00 MH 0.00 WL	Start of Survey L Start node type, Water level 5% h	ength manhole, reference MH1 height/diameter			2565801 2565802 2565803	Comment / 0 Comment / 0 Comment / 0

Manhole Finish (L5 TANK)

M/H Ref:L5 TANK | I/L :mm

23.28

MHF

Dyno Rod Dublin 11 York Road

Surveyed by (Operator)	Job Number	Pipe Length F	Reference(PLR)	Date		Pre Cleaned
ANDY	310518	M	H1 X	31/05/2018	Flushed through to ena survey	
Weather 1 - Dry	Customer Present	t Service Grade/	Structural Grade	Base Unit IAWHSOYGQ9	Se	ection Number 6
ad NEWCASTLE WEST, CO D lice cation	UBLIN.		Division District Location Details			
rpose ty Surface water tchment	S M C	Shape/SizeStort MMaterialConcreteCategoryTotal le			metres	
ale 1:1.21 ection Downstream						
I Ref:MH1 I/L :mm Position Code	Description				Photo	Type/Grade
0.00 ST 0.00 MH 0.00 WL	Start of Survey Len Start node type, ma Water level 5% heig	gth inhole, reference MH1 ght/diameter			2565805 2565806 2565809	Comment / 0 Comment / 0 Comment / 0

Manhole Finish (L6 TANK MH2)

M/H Ref:L6 TANK | I/L :mm

23.23

MHF

Dyno Rod Dublin 11 York Road Ringsend Dublin, 4 Ireland

Structural Defects (SRM 4)

Drain Cleaning, Inspection & Repair

	Job Number 310518	r		Surveyed		Base Unit IAWHSOYGQ9			Date 31/05/2018				
No.	PLR	Dir.	Use	Shape/Size	Date	Mat.	Total Length	Inspection Length	Cat.	Peak Score	Grade	Mean Score	Total Score
1	MH1 X	D	s	25000	31/05/2018	Concrete	25.02 metres	25.02		0	1	0	0
2	MH1 X	D	s	25000	31/05/2018	Concrete	24.1 metres	24.1		0	1	0	0
3	MH1 X	D	s	25000	31/05/2018	Concrete	22.72 metres	22.72		0	1	0	0
4	MH1 X	D	s	25000	31/05/2018	Concrete	23.26 metres	23.26		0	1	0	0
5	MH1 X	D	S	25000	31/05/2018	Concrete	23.28 metres	23.28		0	1	0	0
6	MH1 X	D	s	25000	31/05/2018	Concrete	23.23 metres	23.23		0	1	0	0

Dyno Rod Dublin 11 York Road Ringsend Dublin, 4 Ireland

Service Defects (SRM 4)

Drain Cleaning, Inspection & Repair

Job Number 310518				Surveyed	urveyed by (Operator) ANDY		Base Unit IAWHSOYGQ9			Date 31/05/2018			
No.	PLR	Dir.	Use	Shape/Size	Date	Mat.	Total Length	Inspection Length	Cat.	Peak Score	Grade	Mean Score	Total Score
1	MH1 X	D	s	25000	31/05/2018	Concrete	25.02 metres	25.02		0	1	0	0
2	MH1 X	D	s	25000	31/05/2018	Concrete	24.1 metres	24.1		0	1	0	0
3	MH1 X	D	s	25000	31/05/2018	Concrete	22.72 metres	22.72		0	1	0	0
4	MH1 X	D	S	25000	31/05/2018	Concrete	23.26 metres	23.26		0	1	0	0
5	MH1 X	D	s	25000	31/05/2018	Concrete	23.28 metres	23.28		0	1	0	0
6	MH1 X	D	s	25000	31/05/2018	Concrete	23.23 metres	23.23		0	1	0	0

DYNO-ROD			Dyno Rod Dublin 11 York Road Ringsend Dublin, 4 Ireland
Drain Cleaning, Inspection & Repair	Report S	Summary	
Job Number 310518	Surveyed by (Operator) ANDY	Base Unit IAWHSOYGQ9	Date 31/05/2018
Job Information Total Distance Surveyed: 141.6 Engineer: ANDY Number of Surveys: 6 Number of Surveys grade 4 or a	1 metres above: 0		
Job Comments			
THERE IS ONLY ONE PIPE IN POINT. THERE ARE 6 RUNS E	THE TANK A 450mm CONCRETE BETWEEN THE ARCH SUPPORTS	AS PER SURVEY SHOWS. THERI AS PER SURVEYS. THE TANK IS	E IN ANOTHER MH2 ACCESS IN VERY GOOD CONDITION.
Section 1 Overview (31/05 Manholes: MH1 to L1 TANK Pipe Length: 25.02 metres Structural Grade: 0 Service Grade: 0 Material: Concrete Pipe Size: 25000mm Use: Surface water	5/2018)		
Section 2 Overview (31/05 Manholes: MH1 to L2 TANK Pipe Length: 24.1 metres Structural Grade: 0 Service Grade: 0 Material: Concrete Pipe Size: 25000mm Use: Surface water	5/2018)		
Section 3 Overview (31/05 Manholes: MH1 to L3 TANK Pipe Length: 22.72 metres Structural Grade: 0 Service Grade: 0 Material: Concrete Pipe Size: 25000mm Use: Surface water	5/2018)		
Section 4 Overview (31/05 Manholes: MH1 to L4 TANK Pipe Length: 23.26 metres Structural Grade: 0 Service Grade: 0 Material: Concrete Pipe Size: 25000mm Use: Surface water	5/2018)		
Section 5 Overview (31/05 Manholes: MH1 to L5 TANK Pipe Length: 23.28 metres Structural Grade: 0 Service Grade: 0 Material: Concrete Pipe Size: 25000mm Use: Surface water	5/2018)		

DYNO-ROD Drain Cleaning, Inspection & Repair	Report S	Summary	Dyno Rod Dublin 11 York Road Ringsend Dublin, 4 Ireland
Job Number 310518	Surveyed by (Operator) ANDY	Base Unit IAWHSOYGQ9	Date 31/05/2018
Section 6 Overview (31/05) Manholes: MH1 to L6 TANK Pipe Length: 23.23 metres Structural Grade: 0 Service Grade: 0 Material: Concrete Pipe Size: 25000mm Use: Surface water	/2018)		

Appendix B

EXISTING ATTENUATION SYSTEM MICRODRAINAGE CALCULATIONS

DBFL Consulting H	Ingineers						Page 1
Ormond House		1700	024				
Upper Ormond Quay	7	New	castle	Sout.h			
opper ormona gaaj		Evi a	ating 6	00 Ton	le.		
$\frac{10}{10}$			· · · · · · ·		71		MICLO
Date 12/06/2019		Desi	igned b	y NCG			Drainagr
File 170024- Exis	sting	Cheo	cked by	DJR			Diamage
Innovyze		Sou	rce Con	trol 2	018.1	_	
Summa	rv of Results	for 1	00 vear	Retur	n Per	riod (+10%)
							<u></u>
	Storm	Max	Max	Max	Max	Status	
	Event	Level	Depth Co	ontrol V	olume		
		(m)	(m)	(l/s)	(m³)		
	15 min 0	. 0.2 .0.1	0 201	10.0	164 0	0.17	
	15 min Summer	92.081 - 02 210	U.J81 0 519	10.2	154.6 210 5	OK	
	60 min Summer	- 92.210 - 92 251	0.510	10.2	264 2	OK	
	120 min Summer	92.477	0.777	10.2	315.4	0 K	
	180 min Summer	92.539	0.839	10.2	340.6	0 K	
	240 min Summer	92.573	0.873	10.2	354.6	0 K	
	360 min Summer	92.601	0.901	10.2	365.8	ОК	
	480 min Summer	92.608	0.908	10.2	368.6	ОК	
	600 min Summer	92.605	0.905	10.2	367.3	ОК	
	720 min Summer	92.596	0.896	10.2	363.8	ОК	
	960 min Summer	92.570	0.870	10.2	353.1	O K	
	1440 min Summer	92.501	0.801	10.2	325.2	O K	
	2160 min Summer	92.389	0.689	10.2	279.7	O K	
	2880 min Summer	92.282	0.582	10.2	236.5	ΟK	
	4320 min Summer	92.111	0.411	10.2	166.7	ОК	
	5760 min Summer	91.997	0.297	9.9	120.6	ОК	
	7200 min Summer	91.925	0.225	9.5	91.5	OK	
	8640 Milli Summer	91.880	0.157	9.0	13.3	OK	
	15 min Winter	- 92 128	0.137	10.2	173 9	0 K	
	30 min Winter	92.284	0.584	10.2	237.2	ОК	
	Storm	Rain	Flooded	Dischar	rge Ti	me-Peak	
	Event	(mm/hr)	Volume	Volum	e	(mins)	
			(m³)	(m³)			
	15 min Summer	85.043	0.0	159	9.5	22	
	30 min Summer	58.731	0.0	221	1.2	36	
	60 min Summer	38.058	0.0	289	9.5	66	
	120 min Summer	24.044	0.0	366	5.2	124	
	180 min Summer	18.236	0.0	416	5.7	182	
	240 min Summer	14.954	0.0	455	5.7	242	
	360 min Summer	11.279	0.0	515	5.7	338	
	480 min Summer	9.222	0.0	562	2.2	398	
	600 min Summer	7.884	0.0	600	0.9	464	
	720 min Summer	6.935	0.0	634	4.3	526	
	960 min Summer	5.663	0.0	690	J.6	658	
	1440 min Summer	4.255	0.0	778	3.1	926	
	2100 min Summer	3.193	0.0	8/8	5.∠ 2.0	132U	
	4320 min Summer	2.6UI 1 Q/G	0.0	903 1060).0 9 6	2420	
	5760 min Summer	1 583	0.0	1163	2.2	3112	
	7200 min Summer	1.349	0.0	1237	7.5	3752	
	8640 min Summer	1.183	0.0	1302	2.4	4488	
			0.0	1002	- • •		

10080 min Summer 1.059 0.0 1359.3

30 min Winter 58.731

15 min Winter 85.043 0.0 178.9

©1982-2018 Innovyze

0.0

248.0

5144

22

36

DBFL Consulting Engineers		Page 2
Ormond House	170024	
Upper Ormond Quay	Newcastle South	
Dublin 7	Existing 609 Tank	Micro
Date 12/06/2019	Designed by NCG	
File 170024- Existing	Checked by DJR	Diamage
Innovyze	Source Control 2018.1	

Summary of Results for 100 year Return Period (+10%)

	Stor	m	Max	Max	Max	Max	Status
	Even	t	Level	Depth	Control	Volume	
			(m)	(m)	(1/s)	(m³)	
60	mın	Winter	92.436	0./36	10.2	299.0	ΟK
120	min	Winter	92.587	0.887	10.2	360.0	ΟK
180	min	Winter	92.667	0.967	10.2	392.5	ΟK
240	min	Winter	92.712	1.012	10.2	410.9	ΟK
360	min	Winter	92.752	1.052	10.2	427.0	ΟK
480	min	Winter	92.757	1.057	10.2	429.0	ΟK
600	min	Winter	92.747	1.047	10.2	425.0	ΟK
720	min	Winter	92.736	1.036	10.2	420.5	ΟK
960	min	Winter	92.699	0.999	10.2	405.4	ΟK
1440	min	Winter	92.580	0.880	10.2	357.1	ΟK
2160	min	Winter	92.384	0.684	10.2	277.5	ΟK

2880 min Winter 92.216 0.51610.2209.6O K4320 min Winter 91.991 0.2919.9118.3O K

					== .	
5760	min	Winter	91.883	0.183	9.0 74	.4 O K
7200	min	Winter	91.847	0.147	8.0 59	.5 ОК
8640	min	Winter	91.830	0.130	7.1 52	2.7 ОК
10080	min	Winter	91.818	0.118	6.4 48	.0 ОК
	Stor	m	Rain	Flooded	Discharge	Time-Deak
	Even	+	(mm/hr)	Volume	Volume	(mins)
			((m ³)	(m ³)	(11110)
				((111)	
60	min	Winter	38.058	0.0	324.4	64
120	min	Winter	24.044	0.0	410.2	122
180	min	Winter	18.236	0.0	466.9	180
240	min	Winter	14.954	0.0	510.5	236
360	min	Winter	11.279	0.0	577.7	348
480	min	Winter	9.222	0.0	629.8	452
600	min	Winter	7.884	0.0	673.1	494
720	min	Winter	6.935	0.0	710.5	566
960	min	Winter	5.663	0.0	773.5	724
1440	min	Winter	4.255	0.0	871.5	1024
2160	min	Winter	3.193	0.0	983.7	1412
2880	min	Winter	2.601	0.0	1068.4	1788
4320	min	Winter	1.946	0.0	1198.3	2464
5760	min	Winter	1.583	0.0	1301.7	3064
7200	min	Winter	1.349	0.0	1386.1	3728
8640	min	Winter	1.183	0.0	1458.9	4408
10080	min	Winter	1.059	0.0	1522.9	5144

DBFL Consulting Engineers		Page 3
Ormond House	170024	
Upper Ormond Quay	Newcastle South	
Dublin 7	Existing 609 Tank	Micro
Date 12/06/2019	Designed by NCG	
File 170024- Existing	Checked by DJR	Diamage
Innovyze	Source Control 2018.1	

<u>Rainfall Details</u>

Rainfall Model	FSF	Winter Storms	Yes
Return Period (years)	100	Cv (Summer)	0.750
Region	Scotland and Ireland	l Cv (Winter)	0.840
M5-60 (mm)	17.700	Shortest Storm (mins)	15
Ratio R	0.271	Longest Storm (mins)	10080
Summer Storms	Yes	Climate Change %	+10

<u>Time Area Diagram</u>

Total Area (ha) 1.020

Time	(mins)	Area	Time	(mins)	Area	
From:	To:	(ha)	From:	To:	(ha)	
0	4	0.510	4	8	0.510	

DBFL Consulting Engineers								
Ormond House			17002	4				
Upper Ormond Oua	v		Newca	stle Sout	th			
Dublin 7	4		Exist	ing 609 5	Tank		Misso	
Date 12/06/2019			Desig	ned by N(- G			
File 170024 - Exi	stina		Check	ed by D.T.			Drainage	
	SCING		Check					
Innovyze			Sourc	e Contro.	1 2018.1			
			<u>Model I</u>	<u>Details</u>				
	St	corage is	Online Co	ver Level	(m) 95.500			
		Tan	<u>k or Pon</u>	<u>d Struct</u>	ure			
		In	vert Level	(m) 91.70	0			
Depth (m) Area	(m ²) D	epth (m)	Area (m²)	Depth (m)	Area (m²)	Depth (m)	Area (m²)	
0.000	406.0	0.700	406.0	1.400	406.0	2.100	0.0	
0.100	406.0	0.800	406.0	1.500	406.0	2.200	0.0	
0.200	406.0	1 000	406.0	1.600	0.0	2.300	0.0	
0.400	406.0	1.100	406.0	1.800	0.0	2.400	0.0	
0.500	406.0	1.200	406.0	1.900	0.0			
0.600	406.0	1.300	406.0	2.000	0.0			
	Hyd	ro-Brake	e® Optim	um Outflo	ow Contro	<u>1</u>		
		Ur	nit Refere	nce MD-SHE	-0140-1020-	1500-1020		
		Des	sign Head	(m)		1.500		
		Desig	gn Flow (l	/s)		10.2		
			Flush-F	10 TM	C	alculated		
			Object	ive Minim ion	ise upstrea	m storage		
		SI	mp Availa	ble		SULLACE		
		I	Diameter (mm)		140		
		Inve	ert Level	(m)		91.700		
Mini	.mum Out	let Pipe I	Diameter (mm)		225		
Su	aggested	Manhole I	Diameter (mm)		1200		
Control Points	н	ead (m) F	low (l/s)	Cont	rol Points	Head	(m) Flow (l/s)	
Design Point (Calcul Flush	ated) -Flo™	1.500 0.439	10.2 10.2	Mean Flow	Kick- over Head H	-Flo® 0 Range	.934 8.2 - 8.9	
The hydrological c	alcula+	ions have	been hase	d on the H4	ead/Dischar	ge relatio	nship for the	
Hydro-Brake® Optimum as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated								
Depth (m) Flow ((1/s) De	pth (m) F	low (l/s)	Depth (m)	Flow (l/s)	Depth (m)	Flow (l/s)	
0.100	5.0	1.200	9.2	3.000	14.2	7.000	21.2	
0.200	9.2	1.400	9.9	3.500	15.2	7.500	21.9	
0.300	9.9	1.600	10.5	4.000	16.2	8.000	22.6	
0.400	10.2	1.800	11.1	4.500	17.2	8.500	23.3	
0.500	10.2	∠.000 2.200	12 2	5.000	18.1 18 Q	9.000	23.9	
0.800	9.3	2.200	12.2	6.000	19.7	9.500	24.0	
1.000	8.4	2.600	13.2	6.500	20.5			
	I					1		
		©1	982-2018	3 Innovvz	e			
		01			-			

DBFL Consulting Engi	neers					
rmond House		170	024			
pper Ormond Ouav		New	castle	South	L	
iblin 7		Exi	stina	Tank 1	538	
+0.12/06/2010		Dog	ianod	by ENC		
	_	Des.	i gilea	DY FNS)	
le 1/0024- Existin	g	Cheo	cked b	Y NCG		
novyze		Sou	rce Co	ntrol	2018.	1
<u>Summary o</u>	<u>f Results</u>	for 1	<u>00 yea</u>	r Retu	irn Pe	<u>riod (+10%</u>
	Storm	Max	Max	Max	Max	Status
	Event	(m)	Deptn (m)	(1/e)	(m ³)	
		(111)	(11)	(1/3)	(
15	min Summer	94.573	0.573	48.0	587.2	O K
30	min Summer	94.784	0.784	48.0	804.1	O K
60	min Summer	94.989	0.989	48.0	1013.5	O K
120	min Summer	95.177	1.177	48.0	1206.4	ОК
180	min Summer	95.254	1.254	48.0	1285.8	OK
240	min Summer	95.200	1 310	40.0	13/2 8	0 K 0 K
480	min Summer	95.311	1.311	48.0	1343.5	0 K 0 K
600	min Summer	95.299	1.299	48.0	1331.6	0 K
720	min Summer	95.280	1.280	48.0	1312.0	ОК
960	min Summer	95.230	1.230	48.0	1261.0	0 K
1440	min Summer	95.109	1.109	48.0	1137.1	O K
2160	min Summer	94.887	0.887	48.0	908.9	0 K
2880	min Summer	94.701	0.701	48.0	718.3	0 K
4320	min Summer	94.445	0.445	47.8	456.0	OK
5760	min Summer	94.315 94.267	U.J15 0 267	46.3 12 6	323.0 273 7	U K
8640	min Summer	94.207	0.207	38 0	213.1	0 K 0 K
10080	min Summer	94.223	0.223	34.2	228.5	0 K
15	min Winter	94.646	0.646	48.0	662.1	0 K
30	min Winter	94.887	0.887	48.0	908.9	0 K
	Storm	Rain	Floode	d Disch	arge Ti	Lme-Peak
	rvent	(mm/nr)	vo1um (m ³)	e vol: /‴:	лие 3)	(mins)
			(111)	(111)	,	
15	min Summer	85.043	0.	0 6	24.3	28
30	min Summer	58.731	0.	0 8	66.5	42
60	min Summer	38.058	0.	0 11	34.8	70
120	min Summer	24.044	0.	0 14	35.3	126
180	min Summer	14.054	0.	U 16	33.1	182
240	min Summer	11 270	0.	U 1/	00.0 21 0	∠3U 200
360 480	min Summer	9.222	0.	0 22	04.5	356
400	min Summer	7.884	0.	0 23	56.2	424
720	min Summer	6.935	0.	0 24	87.1	496
960	min Summer	5.663	0.	0 27	08.0	636

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

©1982-2018 Innovyze

3051.7

3443.3

3739.8

4193.2

4557.3

4852.4

5106.8

5329.6

700.6

971.7

4.255

3.193

1.583

1.349

1.183

1.059

914

1292

1652

2336

3000

3680

4408

5144

28

42

1440 min Summer

2160 min Summer

5760 min Summer

7200 min Summer

8640 min Summer

10080 min Summer

2880 min Summer 2.601

4320 min Summer 1.946

15 min Winter 85.043

30 min Winter 58.731

DBFL Consulting Engineers		Page 2
Ormond House	170024	
Upper Ormond Quay	Newcastle South	
Dublin 7	Existing Tank 1538	Micro
Date 12/06/2019	Designed by FNS	
File 170024- Existing	Checked by NCG	Dialitage
Innovyze	Source Control 2018.1	

Summary of Results for 100 year Return Period (+10%)

	Stor Even	m t	Max Level (m)	Max Depth (m)	Max Control (1/s)	Max Volume (m³)	Status
60	min	Winter	95.122	1.122	48.0	1150.2	ОК
120	min	Winter	95.335	1.335	48.0	1368.7	ΟK
180	min	Winter	95.431	1.431	48.0	1466.3	ОК

±00	111211	MINCCI	JO. 101	T. 10 T	10.0	1100.0	0 10
240	min	Winter	95.474	1.474	48.0	1511.1	ΟK
360	min	Winter	95.492	1.492	48.0	1529.7	ΟK
480	min	Winter	95.489	1.489	48.0	1526.3	ΟK
600	min	Winter	95.467	1.467	48.0	1503.7	ОК
720	min	Winter	95.434	1.434	48.0	1469.8	ΟK
960	min	Winter	95.350	1.350	48.0	1384.1	ΟK
1440	min	Winter	95.152	1.152	48.0	1181.1	ΟK
2160	min	Winter	94.790	0.790	48.0	809.3	ΟK
2880	min	Winter	94.523	0.523	48.0	536.0	ΟK
4320	min	Winter	94.281	0.281	44.9	288.0	ΟK
5760	min	Winter	94.236	0.236	37.0	242.2	ОК
7200	min	Winter	94.211	0.211	31.7	216.5	ΟK
8640	min	Winter	94.194	0.194	27.8	198.8	ОК
10080	min	Winter	94.181	0.181	24.9	185.4	ΟK

	Stor	m	Rain	Flooded	Discharge	Time-Peak
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
C 0					4054 5	
60	mın	Winter	38.058	0.0	12/1./	70
120	min	Winter	24.044	0.0	1608.3	124
180	min	Winter	18.236	0.0	1830.4	180
240	min	Winter	14.954	0.0	2001.7	234
360	min	Winter	11.279	0.0	2265.3	304
480	min	Winter	9.222	0.0	2469.8	378
600	min	Winter	7.884	0.0	2639.7	456
720	min	Winter	6.935	0.0	2786.4	534
960	min	Winter	5.663	0.0	3033.8	688
1440	min	Winter	4.255	0.0	3418.6	988
2160	min	Winter	3.193	0.0	3857.1	1364
2880	min	Winter	2.601	0.0	4189.3	1688
4320	min	Winter	1.946	0.0	4698.1	2252
5760	min	Winter	1.583	0.0	5104.5	2952
7200	min	Winter	1.349	0.0	5435.3	3680
8640	min	Winter	1.183	0.0	5720.5	4408
10080	min	Winter	1.059	0.0	5971.2	5144

DBFL Consulting Engineers		Page 3
Ormond House	170024	
Upper Ormond Quay	Newcastle South	
Dublin 7	Existing Tank 1538	Micro
Date 12/06/2019	Designed by FNS	
File 170024- Existing	Checked by NCG	Diginarie
Innovyze	Source Control 2018.1	

<u>Rainfall Details</u>

Rainfall Model	FSR	Winter Storms	Yes
Return Period (years)	100	Cv (Summer)	0.750
Region	Scotland and Ireland	Cv (Winter)	0.840
M5-60 (mm)	17.700	Shortest Storm (mins)	15
Ratio R	0.271	Longest Storm (mins)	10080
Summer Storms	Yes	Climate Change %	+10

<u>Time Area Diagram</u>

Total Area (ha) 4.000

Time	(mins)	Area									
From:	To:	(ha)									
0	4	1.000	4	8	1.000	8	12	1.000	12	16	1.000

DBFL Consulting Engi	neers					Page 4				
Ormond House		170024								
Upper Ormond Ouay		Newcast	le South							
Dublin 7		Existin	g Tank 15	538		Micco				
Date 12/06/2019		Designer	d by FNS							
File 170024 - Existin	7	Chockod	hu NCC			Drain	age			
	9			010 1						
Innovyze		Source	Control 2	2018.1						
	Norage is Or	Model Det	<u>ails</u> Level (m)	97.000						
	Tank	or Pond	Structure	<u>e</u>						
	Inve	rt Level (1	m) 94.000							
Depth (m) Area (m²)	Depth (m) Ar	ea (m²) De	pth (m) Ar	ea (m²) D	epth (m) A	Area (m²)				
0.000 1025.0	0.700	1025.0	1.400	1025.0	2.100	0.0				
0.100 1025.0	0.800	1025.0	1.500	1025.0	2.200	0.0				
0.200 1025.0	0.900	1025.0	1.600	0.0	2.300	0.0				
0.300 1025.0	1.000	1025.0	1.700	0.0	2.400	0.0				
0.400 1025.0	1.100	1025.0	1.800	0.0	2.500	0.0				
0.500 1025.0	1.200	1025.0	1.900	0.0						
0.600 1025.0	1.300	1025.0	2.000	0.0						
<u>H</u>	Hydro-Brake® Optimum Outflow Control									
	Unit	Reference	MD-SHE-02	83-4800-1	500-4800					
	Design	JN Head (M) Flow (1/s)			18 0					
	Design	Flush-Flo™	4	Са	lculated					
		Objective	e Minimise	upstream	storage					
	1	Application	1	-	Surface					
	Sump	> Available	2		Yes					
	Dia	ameter (mm)			283					
	Invert	: Level (m)			94.000					
Minimum O	utlet Pipe Dia	ameter (mm)			300					
Suggest	ed Manhole Dia	ameter (mm)			2100					
Control Points	Head (m) Flo	w (l/s)	Control	Points	Head	(m) Flow	(1/s)			
Design Point (Calculated) Flush-Flo TM	1.500 0.502	48.0 48.0 Me	an Flow ove	Kick-1 er Head Ra	Flo® 1. ange	065	40.7 40.6			
The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake® Optimum as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated										
Depth (m) Flow (1/s)	Depth (m) Flo	w (1/s) De	pth (m) Flo	ow (1/s)	Depth (m)	Flow (1/s)			
0.100	1 000		2				2			
0.100 8.8	1.200	43.1	3.000	67.1	7.000	101.	3 7			
0.200 29.2	1.400	40.4	3.300	12.3	1.500	104.	/ 1			
	1 800	49.0 52 /	4.000	//.⊥ 21 7	0.UUU 8 500	111 I	⊥ ג			
0 500 47.5	2 000	55 1	5.000	86 0	9 000	⊥⊥⊥. 11⊿	5			
0 600 48.0	2 200	57 7	5 500	90.0	9.000	117 ±	6			
0.800 46.3	2.200	60 2	6.000	90.0	9.000	±±/.	U			
1.000 43.0	2.600	62.6	6.500	97.7						
		I		Ι						
	©1 98	32-2018 T	nnovvze							
1	0190									

Appendix C

SURFACE WATER ALLOWABLE OUTFLOW

PROJECT Newcastle South			JOB REF . p170024	
SUBJECT Surface Water C	alculations Allowable Outflow		Calc. Sheet No. 1	Œ
Drawing ref.	Calculations by	Checked by	Date	
170024-3000	FNS	NCG	11-Jun-19	

PERMISSIBLE SURFACE WATER DISCHARGE CALCULATIONS

Site Area

What is the overall site area?

24.58 Hectares (ha) Site is Less than 50 Hectares (Area of site within catchment of new drainage networks excludes open space areas not within new drainage networks) Shown on drawing 170024-3020

Pre-Development Catchment Soil Characteristics

Are there different soil types present on the pre-developed site?

Area24.80Hectares (ha)Drainage Group1ClassDepth to Impermeable Layers1ClassPermeability Group above Impermeable Layers2ClassSlope ^(o) 1ClassSOIL Type2From FSR Tab ¹ SOIL Index0.301	Catchment	This refers to the entire site area	1	
Drainage Group 1 Class Depth to Impermeable Layers 1 Class Permeability Group above Impermeable Layers 2 Class Slope ⁽⁰⁾ 1 Class SOIL Type 2 From FSR Tab ¹ SOIL Index 0.30	Area		24.80	Hectares (ha)
Depth to Impermeable Layers 1 Class Permeability Group above Impermeable Layers 2 Class Slope ^(o) 1 Class SOIL Type 2 From FSR Tab ¹ SOIL Index 0.30	Drainage Group		1	Class
Permeability Group above Impermeable Layers 2 Class Slope ^(o) 1 Class SOIL Type 2 From FSR Tab ¹ SOIL Index 0.30 1	Depth to Impermeable	Layers	1	Class
Slope (°) 1 Class SOIL Type 2 From FSR Tab ¹ SOIL Index 0.30 1	Permeability Group ab	ove Impermeable Layers	2	Class
SOIL Type 2 From FSR Tab ¹ SOIL Index 0.30 1	Slope ^(o)		1	Class
¹ SOIL Index 0.30	SOIL Type		2	From FSR Tabl
	¹ SOIL Index		0.30	

SOIL	SOIL Value	SPR
1	0.15	0.10
2	0.30	0.30
3	0.40	0.37
4	0.45	0.47
5	0.50	0.53

Site SOIL Index

Site SPR Value

Post-Development Catchment Characteristics

Is the development divided into sub-catchments?

How many sub-catchments?

Catchment 1

What is the overall site area for Catchment 1A?

site area for Catchment 1A?	5.93	Hectares (ha)	
Catchment 1	Area (m ²)	Runoff Coeff.	Effective Area (m ²)
Roofs - Type 1 (Draining to gullies)	3395.0	1.00	3395.0
Roofs - Type 2 (Draining to SUDS features)	6575.0	0.80	5260.0
Green Roofs	300.0	0.80	240.0
Roads and Footpaths - Type 1 (Draining to gullies)	8618.0	1.00	8618.0
Roads and Footpaths - Type 2 (Draining to Suds features)	1403.0	0.80	1122.4
Paved Areas		1.00	0.0
Permeable Paving	3657.0	0.75	2742.8
Bioretention Areas		1.00	0.0
Grassed Areas (Open)	7500.0	0.15	1125.0
Area of School Site contributing to Catchment 1A	7200.0	0.15	1080.0
Grassed Areas (Enclosed)	20667.0	0.00	0.0

Include Public Open Space in Effective Catchment Area 1A?

Catchment 1A - Effective Catchment Area

Catchment 1A - Effective Catchment Runoff Coefficient

No m² 23583.2 0.40

0.30

Yes

Catchment 1B

What is the overall site area for Catchment 1B?

site area for Catchment 1B?	2.62	Hectares (ha)	
Catchment 1B	Area (m ²)	Runoff Coeff.	Effective Area (m ²)
Roofs - Type 1 (Draining to gullies)	2400.0	1.00	2400.0
Roofs - Type 2 (Draining to SUDS features)	4283.0	0.80	3426.4
Green Roofs	0.0	0.50	0.0
Roads and Footpaths - Type 1 (Draining to gullies)	7388.0	1.00	7388.0
Roads and Footpaths - Type 2 (Draining to Suds features)	430.0	0.80	344.0
Paved Areas		1.00	0.0
Permeable Paving	1846.0	0.75	1384.5
Bioretention Areas		1.00	0.0
Grassed Areas (Open)	1950.0	0.15	292.5
Grassed Areas (Enclosed)	7968.0	0.00	0.0
Public Open Space		0.30	0.0
Include Public Open Space in Effective Catchment Area 1B?	No	1	

Catchment 1B - Effective Catchment Area

15235 4

Catchment 1C

What is the overall site area for Catchment 1C?

2.81 Hectares (ha)

Catchment 1C	Area (m ²)	Runoff Coeff.	Effective Area (m ²)
Roofs - Type 1 (Draining to gullies)	2144.0	1.00	2144.0
Roofs - Type 2 (Draining to SUDS features)	4197.0	0.80	3357.6
Green Roofs		0.50	0.0
Roads and Footpaths - Type 1 (Draining to gullies)	4630.0	1.00	4630.0
Roads and Footpaths - Type 2 (Draining to Suds features)	215.0	0.80	172.0
Paved Areas		1.00	0.0
Permeable Paving	2133.0	0.75	1599.8
Bioretention Areas		1.00	0.0
Grassed Areas (Open)	2950.0	0.15	442.5
Grassed Areas (Enclosed)	11873.0	0.00	0.0
Public Open Space		0.30	0.0

Include Public Open Space in Effective Catchment Area 1B?

No	
12345.9	m ²
0.44	

0.84

0.27

Hectares (ha)

Hectares (ha)

0.75 Hectares (ha)

Catchment 1B - Effective Catchment Runoff Coefficient

Catchment 1B - Effective Catchment Area

Catchment 1D (Future Commercial Site)

What is the overall site area for Catchment 1D?

Catchment 1D will be attenuated within its own Catchment

Catchment 1E (Future School Site, excluding area contributing to 1A)

What is the overall site area for Catchment 1E?

Catchment 1E will be attenuated within its own Catchment

Catchment 1F (Attenuated within own catchment)

What is the overall site area for Catchment 1F?

Catchment 1F will be attenuated within its own Catchment

Catchment 2 (Future Residential Development)		
What is the overall site area for Catchment 2?	8.87 Hectares (ha)	
Catchment 2 will be attenuated within its own Catchment		
Catchment 3 (Future Residential Development)		
What is the overall site area for Catchment 3?	2.47 Hectares (ha)	
Catchment 3 will be attenuated within its own Catchment		
Permissible Site Discharge		
What is the Standard Average Annual Rainfall (SAAR)?	795.0 mm	From Met Eireann, Co-ordinates 299000, 235000
Is the overall site area less than 50 hectares?	Yes	
5 QBAR _{Rural} calculated for 50 ha and linearly interpolated for area of site	52.00 Litres/sec	
⁷ Site Discharge =	52.00 Litres/sec	

Outflow for Each Sub-Catchment

Sub - Catchment	Area (m²)	Calculated Allowable Outflow (l/s)	
1A	59315	12.55	
1B	26265	5.56	
1C	28142	5.95	
1D	8400	1.78	
1E	7500	1.59	
1F	2740	0.58	
2	88700	18.77	
3	24700	5.23	
		52.00	

Notes and Formulae

1. SOIL index value calculated from Flood Studies Report - The Classification of Soils from Winter Rainfall Acceptance Rate (Table 4.5).

2. SPR value calculated from GDSDS - Table 6.7.

3. Rainfall depth for 100 year return period, 6 hour duration with additional 10% for climate change.

 $\label{eq:long-term} \text{4. Long-term storage Vol}_{\text{xs}} \ (\text{m}^3) = \text{Rainfall}. \\ \text{Area.10.} [(\text{PIMP}/100)(0.8.\alpha) + (1-\text{PIMP}/100)(\beta.\text{SPR}) - \text{SPR}]. \ (\text{GDSDS Section 6.7.3}).$

Where long-term storage cannot be provided on-site due to ground conditions, Total Permissible Outflow is to be kept to QBAR (Rural). 5. Total Permissible Outflow - QBAR (Rural) calculated in accordance with GDSDS - Regional Drainage Policies

(Volume 2 - Chapter 6), i.e. QBAR(m3/s)=0.00108x(Area)^{0.89}(SAAR)^{1.17}(SOIL)^{2.17} - For catchments greater than 50 hectares in area. Flow rates are linearly interpolated for areas samller than 50 hectares.

6. Where Total Permissible Outflow is less than 2.0l/s and not achievable, use 2.0 l/s or closest value possible.

7. QBAR multiplied by growth factors of 0.85 for 1 year, 2.1 for 30 year and 2.6 for 100 year return period events, from GDSDS Figure C2.

Appendix D

SURFACE WATER ATTENUATION CALCULATIONS

DBEL Consult	Find	r Engi	noore							Page	1
		Jungi	licers		1					rage	1
Ormond House	9				1/00)24					
Upper Ormond Quay					Newc	castle	South				
Dublin 7					Atte	enuatio	on Area	1A (30	yrs)	Mico	
Date 02/07/2	2019	9			Desi	gned k	y FNS				U
File 170024-	- At	tenua	tion		Chec	ked by	/ NCG			Uldi	nage
Innovyze					Sour	ce Cor	ntrol 20	18.1			
	Sum	mary d	of Resi	ults	for 3	0 vear	Return	Period	(+10%)	
	<u>o uni</u>	<u>intary</u> c	<u> 1(00)</u>		101 0	<u>year</u>	neeuin	101104	() 1 0 0	<u></u>	
			Н	alf Dr	ain Ti	me : 696	6 minutes				
	Stor	m	Max	Max	M	lax	Max	Max	Max	Status	
1	Even	t	Level	Depth	Infil	tration	Control 3	Σ Outflow	Volume		
			(m)	(m)	(1	/s)	(1/s)	(1/s)	(m³)		
15	min	Summor	96 190	0 300		0 0	11 3	11 2	280 5	0 K	
30	min	Summer	96.318	0.518		0.0	11.7	11.7	382.1	0 K	
60	min	Summer	96.462	0.662		0.0	11.8	11.8	488.9	0 K	
120	min	Summer	96.615	0.815		0.0	11.8	11.8	601.5	0 K	
180	min	Summer	96.703	0.903		0.0	11.8	11.8	666.6	ОК	
240	min	Summer	96.762	0.962		0.0	11.8	11.8	710.3	ΟK	
360	min	Summer	96.836	1.036		0.0	11.8	11.8	764.8	ΟK	
480	min	Summer	96.877	1.077		0.0	11.8	11.8	794.7	O K	
600	min	Summer	96.898	1.098		0.0	11.8	11.8	810.7	ΟK	
720	min	Summer	96.912	1.112		0.0	11.8	11.8	820.6	ΟK	
960	min	Summer	96.925	1.125		0.0	11.8	11.8	830.4	ОК	
1440	min	Summer	96.920	1.120		0.0	11.8	11.8	826.9	OK	
2160	min	Summer	96.878	1 020		0.0	11.8	11.8	752.0	OK	
4320	min	Summer	90.020	1.020		0.0	11.0	11.0	658 1	0 K 0 K	
5760	min	Summer	96 567	0.052		0.0	11 8	11.0	565 7	0 K	
7200	min	Summer	96.454	0.654		0.0	11.8	11.8	482.8	ОК	
8640	min	Summer	96.359	0.559		0.0	11.8	11.8	412.5	ΟK	
10080	min	Summer	96.280	0.480		0.0	11.7	11.7	354.1	ОК	
15	min	Winter	96.227	0.427		0.0	11.5	11.5	314.8	ΟK	
			Storm		Rain	Flooded	l Dischard	qe Time-Pe	eak		
			Event	(mm/hr)	Volume	Volume	(mins)		
				•		(m³)	(m³)	• •			
		1 -				<u> </u>		C	22		
		15	min Sur	mmer	65.469	0.0	278	. 6	23		
		30	min Sur	mmer	44.986	0.0	J 385	.J 1	31 66		
		0U 120	min Sur	mmer	29.349 18 713	0.0) 514	• ±	126		
		120 180	min Sur	mmer	14.285	0.0) 752	.2 .2	186		
		240	min Sur	mmer	11.771	0.0) 82.6	.6	244		
		360	min Sur	mmer	8.943	0.0) 942	.0	364		
		480	min Sur	mmer	7.351	0.0) 1032	.3	182		
		600	min Sur	mmer	6 311	0 0) 1107	5 1	576		

720 min Summer

960 min Summer

1440 min Summer

4320 min Summer

5760 min Summer

7200 min Summer

8640 min Summer

10080 min Summer

2160 min Summer 2.620

2880 min Summer 2.147

15 min Winter 65.469

5.571

4.574

3.463

1.621

1.137

1.002

0.900

1.328

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

©1982-2018 Innovyze

1172.5

1281.8

1448.1

1820.7

2059.8

2256.1

2414.6

2551.6

312.8

2671.4

0.0 1666.2

632

766

1030

1448

1848

2640

3400

4112

4840

5544

23

DBFL Consulting Engineers	Page 2	
Ormond House	170024	
Upper Ormond Quay	Newcastle South	
Dublin 7	Attenuation Area 1A (30 yrs)	Micro
Date 02/07/2019	Designed by FNS	
File 170024- Attenuation	Checked by NCG	Diamage
Innovyze	Source Control 2018.1	1

	Summary o	of Resu	ilts :	<u>for 30 year</u>	Return	Period	(+10%)	<u>) </u>
	Storm	Max	Max	Max	Max	Max	Max	Status
	Event	Level (m)	Depth (m)	Infiltration (1/s)	Control X (1/s)	Outflow (1/s)	Volume (m³)	
30	min Winter	96.382	0.582	0.0	11.8	11.8	429.5	ОК
60	min Winter	96.546	0.746	0.0	11.8	11.8	550.7	ΟK
120	min Winter	96.722	0.922	0.0	11.8	11.8	680.4	ОК
180	min Winter	96.826	1.026	0.0	11.8	11.8	757.4	ΟK
240	min Winter	96.899	1.099	0.0	11.8	11.8	810.8	ΟK
360	min Winter	96.995	1.195	0.0	11.8	11.8	881.8	ΟK
480	min Winter	97.055	1.255	0.0	11.8	11.8	926.5	ΟK
600	min Winter	97.094	1.294	0.0	11.8	11.8	954.8	ΟK
720	min Winter	97.119	1.319	0.0	11.8	11.8	970.8	ΟK
960	min Winter	97.149	1.349	0.0	11.8	11.8	980.7	O K
1440	min Winter	97.109	1.309	0.0	11.8	11.8	965.7	ΟK
2160	min Winter	97.032	1.232	0.0	11.8	11.8	909.2	ΟK
2880	min Winter	96.921	1.121	0.0	11.8	11.8	827.1	ΟK
4320	min Winter	96.693	0.893	0.0	11.8	11.8	659.3	ОК
5760	min Winter	96.493	0.693	0.0	11.8	11.8	511.3	ΟK
7200	min Winter	96.332	0.532	0.0	11.8	11.8	392.5	ОК
8640	min Winter	96.212	0.412	0.0	11.5	11.5	304.0	ΟK
10080	min Winter	96.125	0.325	0.0	11.0	11.0	240.1	ΟK

Storm		Rain	Flooded	Discharge	Time-Peak				
		Event		Event (m		(mm/hr)	Volume	Volume	(mins)
					(m³)	(m³)			
	30	min	Winter	44.986	0.0	432.2	37		
	60	min	Winter	29.349	0.0	576.2	66		
	120	min	Winter	18.713	0.0	735.7	124		
	180	min	Winter	14.285	0.0	842.7	182		
	240	min	Winter	11.771	0.0	926.0	240		
	360	min	Winter	8.943	0.0	1055.0	356		
	480	min	Winter	7.351	0.0	1155.6	472		
	600	min	Winter	6.311	0.0	1239.2	584		
	720	min	Winter	5.571	0.0	1311.3	694		
	960	min	Winter	4.574	0.0	1431.4	908		
	1440	min	Winter	3.463	0.0	1599.6	1144		
	2160	min	Winter	2.620	0.0	1866.1	1604		
	2880	min	Winter	2.147	0.0	2039.2	2024		
	4320	min	Winter	1.621	0.0	2307.4	2852		
	5760	min	Winter	1.328	0.0	2527.1	3576		
	7200	min	Winter	1.137	0.0	2704.7	4320		
	8640	min	Winter	1.002	0.0	2858.4	4936		
	10080	min	Winter	0.900	0.0	2993.5	5648		

DBFL Consulting Engineers	Page 3	
Ormond House	170024	
Upper Ormond Quay	Newcastle South	
Dublin 7	Attenuation Area 1A (30 yrs)	Micro
Date 02/07/2019	Designed by FNS	
File 170024- Attenuation	Checked by NCG	Diamage
Innovyze	Source Control 2018.1	

<u>Rainfall Details</u>

Rainfall Model	FSR	Winter Storms	Yes
Return Period (years)	30	Cv (Summer) 0.	.750
Region	Scotland and Ireland	Cv (Winter) 0.	.840
M5-60 (mm)	17.700	Shortest Storm (mins)	15
Ratio R	0.271	Longest Storm (mins) 10	0800
Summer Storms	Yes	Climate Change %	+10

<u>Time Area Diagram</u>

Total Area (ha) 2.362

Time	(mins)	Area	Time	(mins)	Area	Time	(mins)	Area
From:	To:	(ha)	From:	To:	(ha)	From:	To:	(ha)
0	4	0.671	4	8	1.521	8	12	0.170

DBFL Consult	ing Engi	neers										Pa	ge 4	
Ormond House					17002	4								
Upper Ormond	Quay			1	Newca	stle	Sou	th						
Dublin 7	-				Atten	uatic	n A	rea	1A (3	0 vr:	s)		licco	
Date 02/07/2	019				Desia	ned b	v F	NS		7			IILIL	
File 170024 -	1++0n112	tion			⁷ hock	ad hi		C					nıbı	300
	Accentua				7				10 1					
Innovyze					sourc	e Cor	itro	I 20.	18.1					
MOUEL DELAITS														
Storage is Online Cover Level (m) 98.500														
Cellular Storage Structure														
		<u> </u>	/0110	<u>i i u i</u>	0001	<u>age</u> .	JULU	ocur	<u> </u>					
			Ir	nvert	Level	(m)	95.8	800 Sa	afety F	actor	2.0)		
I	Infiltrati	on Coef	ficie	ent E	Base (r	n/hr)	0.000	000	Por	cosity	1.00)		
L	nfiltrati	on Coei	tilcie	ent S	ide (r	n/hr)	0.000	000						
Dept	h (m) Area	a (m²)	Inf.	Area	a (m²)	Depth	(m)	Area	(m²)	Inf. 2	Area	(m²)		
	0.000	738.0			0.0	1	.300		738.0			0.0		
	0.100	738.0			0.0	1	.400		0.0			0.0		
	0.200	738.0			0.0	1	.500		0.0			0.0		
	0.300	738.0			0.0	1	.600		0.0			0.0		
	0.400	/38.0			0.0		. /00		0.0			0.0		
1	0.500	738.0			0.0		.800		500.0			0.0		
1	0.000	738.0			0.0		.900		500.0			0.0		
1	0.700	738 0			0.0		100		500.0			0.0		
	0.000	738 0			0.0	2	200		500.0			0.0		
	1.000	738.0			0.0	2	.300		500.0			0.0		
	1.100	738.0			0.0	2	.400		0.0			0.0		
	1.200	738.0			0.0	2	.500		0.0			0.0		
	<u>H</u>	lydro-	Brak	ce®	Optim	ium Oi	ıtfl	ow C	ontro	1				
	_		Ŧ-	T	D - 6			01.41	1000	2400	1000			
			De	nit	Reiere	mce ML)-SHE	-0141	-1260	2400 2	1260			
			Desi	an F	low (1	(III) /s)				۷.	12 6			
			DCD1	-gn i F	lush-F	'lo™			C	alcula	ated			
					Object	ive N	linim	ise u	pstrea	m sto	rage			
				Ap	plicat	ion				Sur	face			
			S	Sump	Availa	ble					Yes			
				Diam	eter (mm)					141			
			Inv	vert	Level	(m)				95	.800			
	Minimum (Suggest	Dutlet ted Man	Pipe	Diam	eter (eter (mm) mm)					225 1500			
Control Po	oints	Head	(m) 1	Flow	(l/s)		Cont	rol P	oints		Head	(m)	Flow	(1/s)
Design Point (C	alculated) 2	400		12 F				Kick-	-Flor	1	.263		93
	Flush-Flor	^Μ 0.	.615		11.8	Mean	Flow	over	Head F	Range	Ŧ	-		10.6
The bardenel and		1	. h	he-	n haa-	d an +	ho T		loober	~~ ~~ ~	1-+	ook -	for	+ h c
Hudro-Brako	Optimum a		fied	e Dee ch	n base	nothor	ле п	eau/D	ISCHAL	Je rei 1 dour	i ac i o	thor	+hon	cile 2
Hydro-Brake Optimum as specified. Should another type of control device other than a														
invalidated	PCTHUND D	- util	Jeu L		511696	SCOLAG	,C 10	acting	carcu.	LUCIUI	.10 W1	TT NE		
Depth (m) F	low (l/s)	Depth	(m)	Flow	(l/s)	Depth	(m)	Flow	(1/s)	Deptl	h (m)	Flor	v (1/s	5)
0.100	5.1	0.	.200		9.7	n	.300		10.8		0.400		11	. 4
0.100	0.1		> >		2.1	1	,			1				-
			©	1982	-201	3 Inn	OVV2	ze						
					. –									

DBFL Consulting Engineers	Page 5	
Ormond House	170024	
Upper Ormond Quay	Newcastle South	
Dublin 7	Attenuation Area 1A (30 yrs)	Micro
Date 02/07/2019	Designed by FNS	
File 170024- Attenuation	Checked by NCG	Diamage
Innovyze	Source Control 2018.1	

Hydro-Brake® Optimum Outflow Control										
Denth (m)	Flow (1/s)	Depth (m)	Flow (1/s)	Depth (m)	Flow (1/s)	Depth (m)	Flow (1/s)			
Depen (m)	110# (1/3/	Depen (m)	110# (1/3)	Depen (m)	110 (1/3)	Depen (m)	110# (1/3/			
0.500	11.7	1.800	11.0	4.000	16.1	7.500	21.7			
0.600	11.8	2.000	11.5	4.500	17.0	8.000	22.4			
0.800	11.6	2.200	12.1	5.000	17.9	8.500	23.0			
1.000	11.1	2.400	12.6	5.500	18.7	9.000	23.7			
1.200	9.9	2.600	13.1	6.000	19.5	9.500	24.3			
1.400	9.8	3.000	14.0	6.500	20.2					
1.600	10.4	3.500	15.1	7.000	21.0					
	ine Deei							Dama 1		
---------------------	------------	--------------	-----------------	------------------	-------------	------------	-----------------------------	------------	-----------	
DBFL CONSULT										
Ormond House 170024										
Upper Ormond	l Quay	Newo	Newcastle South							
Dublin 7			Atte	enuatio	on Area 1	A (100	vrs)	Micco	<u></u>	
Date 02/07/2	019		Dest	aned b	V FNS		<u> </u>			
Eile 170024	1019	tion	Char		- NGC			Draina	CC	
FILE 170024-	Allenua		Chec	скеа ру	/ NCG				J	
Innovyze			Soui	cce Cor	ntrol 201	.8.1				
<u>S</u>	Summary c	of Results	for 10) <u>0 yea</u> ı	r Return	Period	(+108	5)		
		Half	Drain Ti	me : 878	3 minutes.					
				_				.		
5	Storm	Max Ma		lax	Max	Max	Max	Status		
r r	ivent	Level Dep	oth infii	tration	(1/a)	(1/a)	volume (m ³)			
		(m) (m	() (J	L/S)	(1/5)	(1/5)	(m°)			
15 :	min Summer	96.296 0.4	96	0.0	11.7	11.7	366.1	ОК		
30	min Summer	96.481 0.6	81	0.0	11.8	11.8	502.6	ОК		
60 :	min Summer	96.669 0.8	69	0.0	11.8	11.8	641.5	ОК		
120 :	min Summer	96.868 1.0	68	0.0	11.8	11.8	788.5	ОК		
180 :	min Summer	96.987 1.1	87	0.0	11.8	11.8	876.0	ОК		
240	min Summer	97.071 1.2	71	0.0	11.8	11.8	937.9	ОК		
360 :	min Summer	97.625 1.8	25	0.0	11.8	11.8	1013.0	ОК		
480 :	min Summer	97.703 1.9	03	0.0	11.8	11.8	1052.0	ОК		
600 :	min Summer	97.745 1.9	45	0.0	11.8	11.8	1073.3	ОК		
720 :	min Summer	97.765 1.9	65	0.0	11.8	11.8	1083.4	0 K		
960 :	min Summer	97.784 1.9	84	0.0	11.8	11.8	1092.7	0 K		
1440 :	min Summer	97.782 1.9	82	0.0	11.8	11.8	1091.5	0 K		
2160 :	min Summer	97.730 1.9	30	0.0	11.8	11.8	1065.5	O K		
2880 :	min Summer	97.656 1.8	56	0.0	11.8	11.8	1028.6	O K		
4320 :	min Summer	97.081 1.2	81	0.0	11.8	11.8	945.3	ΟK		
5760 :	min Summer	96.909 1.1	09	0.0	11.8	11.8	818.3	ΟK		
7200 :	min Summer	96.757 0.9	57	0.0	11.8	11.8	706.2	0 K		
8640 :	min Summer	96.625 0.8	25	0.0	11.8	11.8	608.7	ΟK		
10080 :	min Summer	96.510 0.7	10	0.0	11.8	11.8	523.7	ΟK		
15 :	min Winter	96.357 0.5	57	0.0	11.8	11.8	410.9	ОК		
		Storm	Rain	Flooded	l Discharge	• Time-Pe	eak			
		Event	(mm/hr)	Volume	Volume	(mins)			
			-	(m³)	(m³)					
	15	min Summer	85.043	0.0	363.9)	23			
	30) min Summer	58.731	0.0	504.4	ł	38			
	60) min Summer	38.058	0.0	667.7	7	68			
	120) min Summer	24.044	0.0	844.4	1 1	L26			
	180) min Summer	18.236	0.0	960.7		L86			
	240) min Summer	14.954	0.0	1050.1	- 4	246			
	360) min Summer	11.279	0.0	1187.3	3	364			
	480) min Summer	9.222	0.0) 1293.4	<u>l</u> 4	184			

600 min Summer

720 min Summer

960 min Summer

1440 min Summer

4320 min Summer

5760 min Summer

7200 min Summer

8640 min Summer

10080 min Summer

2160 min Summer 3.193

2880 min Summer 2.601

15 min Winter 85.043

7.884

6.935

5.663

4.255

1.946

1.349

1.183

1.059

1.583

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

©1982-2018 Innovyze

1380.7

1300. 1455.4

1577.5

1714.8

2030.5

2204.8

2469.7

2690.7

2864.8

3014.7

408.3

3145.6

602

704

814

1072

1480

1908

2812

3568

4320

5016

5744

24

DBFL Consulting Engineers		Page 2
Ormond House	170024	
Upper Ormond Quay	Newcastle South	
Dublin 7	Attenuation Area 1A (100 yrs)	Mirro
Date 02/07/2019	Designed by FNS	
File 170024- Attenuation	Checked by NCG	Diamage
Innovyze	Source Control 2018.1	

<u>i</u>	<u>Summary o</u>	<u>f Resu</u>	lts f	or 100 yea:	<u>r Return</u>	Period	(+10%)
	Storm	Max	Max	Max	Max	Max	Max	Status
	Event	Level (m)	Depth (m)	Infiltration (1/s)	Control X (1/s)	Outflow (1/s)	Volume (m³)	
30	min Winter	96.565	0.765	0.0	11.8	11.8	564.6	ΟK
60	min Winter	96.778	0.978	0.0	11.8	11.8	722.1	ΟK
120	min Winter	97.008	1.208	0.0	11.8	11.8	891.5	ΟK
180	min Winter	97.583	1.783	0.0	11.8	11.8	993.4	ΟK
240	min Winter	97.719	1.919	0.0	11.8	11.8	1060.2	ΟK
360	min Winter	97.893	2.093	0.0	11.8	11.8	1147.0	ΟK
480	min Winter	97.996	2.196	0.0	12.1	12.1	1198.5	ΟK
600	min Winter	98.058	2.258	0.0	12.2	12.2	1229.6	ΟK
720	min Winter	98.094	2.294	0.0	12.3	12.3	1247.6	ΟK
960	min Winter	98.122	2.322	0.0	12.4	12.4	1259.4	O K
1440	min Winter	98.102	2.302	0.0	12.3	12.3	1251.9	ΟK
2160	min Winter	98.017	2.217	0.0	12.1	12.1	1209.0	ΟK
2880	min Winter	97.890	2.090	0.0	11.8	11.8	1145.7	ΟK
4320	min Winter	97.610	1.810	0.0	11.8	11.8	1005.6	ОК
5760	min Winter	96.901	1.101	0.0	11.8	11.8	812.9	ΟK
7200	min Winter	96.660	0.860	0.0	11.8	11.8	634.3	ОК
8640	min Winter	96.469	0.669	0.0	11.8	11.8	493.4	ОК
10080	min Winter	96.322	0.522	0.0	11.7	11.7	385.2	ΟK

Storm		Rain	Flooded	Discharge	Time-Peak	
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
30	min	Winter	58.731	0.0	565.0	38
60	min	Winter	38.058	0.0	748.2	66
120	min	Winter	24.044	0.0	945.8	126
180	min	Winter	18.236	0.0	1075.8	184
240	min	Winter	14.954	0.0	1175.8	242
360	min	Winter	11.279	0.0	1329.0	356
480	min	Winter	9.222	0.0	1446.8	470
600	min	Winter	7.884	0.0	1543.2	582
720	min	Winter	6.935	0.0	1624.5	692
960	min	Winter	5.663	0.0	1749.7	900
1440	min	Winter	4.255	0.0	1794.9	1128
2160	min	Winter	3.193	0.0	2274.3	1600
2880	min	Winter	2.601	0.0	2469.3	2052
4320	min	Winter	1.946	0.0	2763.0	2980
5760	min	Winter	1.583	0.0	3013.8	3808
7200	min	Winter	1.349	0.0	3209.0	4536
8640	min	Winter	1.183	0.0	3377.1	5192
10080	min	Winter	1.059	0.0	3524.5	5856

DBFL Consulting Engineers		Page 3
Ormond House	170024	
Upper Ormond Quay	Newcastle South	
Dublin 7	Attenuation Area 1A (100 yrs)	Mirro
Date 02/07/2019	Designed by FNS	
File 170024- Attenuation	Checked by NCG	Diamage
Innovyze	Source Control 2018.1	

<u>Rainfall Details</u>

Rainfall Model	FSR	Winter Storms	Yes
Return Period (years)	100	Cv (Summer)	0.750
Region	Scotland and Ireland	Cv (Winter)	0.840
M5-60 (mm)	17.700	Shortest Storm (mins)	15
Ratio R	0.271	Longest Storm (mins)	10080
Summer Storms	Yes	Climate Change %	+10

<u>Time Area Diagram</u>

Total Area (ha) 2.362

Time	(mins)	Area	Time	(mins)	Area	Time	(mins)	Area
From:	To:	(ha)	From:	To:	(ha)	From:	To:	(ha)
0	4	0.671	4	8	1.521	8	12	0.170

DBFL Consulting Engineers					Pa	ge 4			
Ormond House									
Upper Ormond Quay Newcastle South									
Dublin 7	Attenua	ation A	rea 1A (1	00 vrs)		icco			
Date 02/07/2019	Date 02/07/2019 Designed by FNS								
File 170024- Attenuation	D	alna	aqe						
ΙΠΠΟΥΥΖΕ	source	Contro.	1 2018.1						
Madal Dataila									
MOQEL DETAILS									
Storage is Or	Storage is Online Cover Level (m) 09 500								
			(,						
<u>Cellula</u>	r Stora	ge Stru	<u>cture</u>						
Inve	rt Level	(m) 95.8	00 Safety H	Tactor 2.0)				
Infiltration Coefficient	Base (m/h	nr) 0.000	00 Por	cosity 1.00)				
	Side (m/i	11) 0.000	00						
Depth (m) Area (m²) Inf. Ar	ea (m²) D	epth (m)	Area (m²)	Inf. Area	(m²)				
0.000 738.0	0.0	1.300	738.0		0.0				
0.100 738.0	0.0	1.400	0.0		0.0				
0.200 738.0	0.0	1.500	0.0		0.0				
0.300 738.0	0.0	1.600	0.0		0.0				
0.400 738.0	0.0	1.700	0.0		0.0				
0.500 738.0	0.0	1.800	500.0		0.0				
0.600 738.0	0.0	1.900	500.0		0.0				
0.700 738.0	0.0	2.000	500.0		0.0				
0.800 /38.0	0.0	2.100	500.0		0.0				
	0.0	2.200	500.0		0.0				
1 100 738 0	0.0	2.300	500.0		0.0				
1.200 738.0	0.0	2.500	0.0		0.0				
				_					
<u>Hydro-Brake®</u>	Optimu	n Outfl	<u>ow Contro</u>	1					
Unit	. Referenc	e MD-SHE	-0141-1260-	2400-1260					
Desic	n Head (m	ı)		2.400					
Design	Flow (1/s	;)		12.6					
	Flush-Flo)TM	C	alculated					
	Objectiv	re Minim	ise upstrea	m storage					
P	pplicatio	n		Surface					
Sump	> Availabl	.e		Yes					
Dia	umeter (mm	1)		141					
Minimum Outlet Pine Dia	, Level (II motor (mm	())		93.000					
Suggested Manhole Dia	ameter (mm	ı)		1500					
Control Points Head (m) Flo	w (1/s)	Cont	rol Points	Head	(m)	Flow	(1/s)		
	. (1/0/	00110			(,	110	(1)07		
Design Point (Calculated) 2.400 Flush-Flo™ 0.615	12.6 11 8 M	ean Flow	Kick-	-Flo® 1. Range	.263		9.3 10 6		
		1.1.1.1.1.0.1							
The hydrological calculations have be	en based	on the He	ead/Dischar	ge relation	nship	for t	the		
Hydro-Brake® Optimum as specified.	Should and	ther type	e of contro	l device ot	ther t	than a	a		
Hydro-Brake Optimum® be utilised ther	n these st	orage ro	uting calcu	lations wil	ll be				
invalidated									
Depth (m) Flow (l/s) Depth (m) Flow	w (l/s) D	epth (m)	Flow (l/s)	Depth (m)	Flow	(1/s)		
0.100 5.1 0.200	9.7	0.300	10.8	0.400		11.	4		
	I								
©198	82-2018	Innovyz	e						

DBFL Consulting Engineers		Page 5
Ormond House	170024	
Upper Ormond Quay	Newcastle South	
Dublin 7	Attenuation Area 1A (100 yrs)	Mirro
Date 02/07/2019	Designed by FNS	
File 170024- Attenuation	Checked by NCG	Diamage
Innovyze	Source Control 2018.1	

<u>Hydro-Brake® Optimum Outflow Control</u>							
Depth (m)	Flow (l/s)	Depth (m)	Flow (l/s)	Depth (m)	Flow (l/s)	Depth (m)	Flow (l/s)
0.500	11.7	1.800	11.0	4.000	16.1	7.500	21.7
0.600	11.8	2.000	11.5	4.500	17.0	8.000	22.4
0.800	11.6	2.200	12.1	5.000	17.9	8.500	23.0
1.000	11.1	2.400	12.6	5.500	18.7	9.000	23.7
1.200	9.9	2.600	13.1	6.000	19.5	9.500	24.3
1.400	9.8	3.000	14.0	6.500	20.2		
1.600	10.4	3.500	15.1	7.000	21.0		

DBFL Consult	ting Engi	noore							Page	1
Ormand Hause		IICCIS		1700	124				rage	-
Newcastle South									(
Dublin 7 Attenuation 1B (30 years)								_ Mirr	\mathbf{O}	
Date 02/07/2	2019			Desi	.gned b	y FNS			Dcair	סחהר
File 170024	- Attenua	tion		Chec	ked by	V NCG			DIGII	lage
Innovyze Source Control 2018.1										
	Summary of	of Res	ults 1	for 3	<u>0 year</u>	Return	Period	(+10%))	
		Н	alf Dra	ain Ti	me : 399	minutes.				
	a								Charles	
	Storm	Max	Max Denth	M Tnfili	lax tration	Max Control E	Max	Max	Status	
	lvent	(m)	(m)	(1	./s)	(1/s)	(1/s)	(m ³)		
				•						
15	min Summer	91.914	0.314		0.0	15.5	15.5	176.0	ΟK	
30	min Summer	92.022	0.422		0.0	16.5	16.5	236.5	ОК	
60	min Summer	92.128	0.528		0.0	17.0	17.0	295.7	OK	
120	min Summer	92.233	0.633		0.0	17.3	17.3	354.2	OK	
180	min Summer	92.302	0.702		0.0	17.3	17.3	393.2	OK	
360	min Summor	92.301	0.701		0.0	17.3	17.3	420.4	OK	
480	min Summer	92.400	0.000		0.0	17.3	17.3	534 2	0 K	
600	min Summer	92.504	1 007		0.0	17.3	17 3	564 0	0 K	
720	min Summer	92.662	1.062		0.0	17.3	17.3	594.8	0 K	
960	min Summer	92.752	1.152		0.0	17.3	17.3	645.2	0 K	
1440	min Summer	92.839	1.239		0.0	17.3	17.3	694.1	ОК	
2160	min Summer	92.817	1.217		0.0	17.3	17.3	681.4	ОК	
2880	min Summer	92.761	1.161		0.0	17.3	17.3	650.3	ΟK	
4320	min Summer	92.678	1.078		0.0	17.3	17.3	603.9	ΟK	
5760	min Summer	92.113	0.513		0.0	17.0	17.0	287.5	ΟK	
7200	min Summer	91.819	0.219		0.0	13.9	13.9	122.5	ΟK	
8640	min Summer	91.792	0.192		0.0	13.3	13.3	107.5	ΟK	
10080	min Summer	91.788	0.188		0.0	13.3	13.3	105.4	ΟK	
15	min Winter	91.953	0.353		0.0	15.9	15.9	198.0	ΟK	
		Storm		Rain	Flooded	l Discharge	e Time-Pe	ak		
		Event	(n	mm/hr)	Volume	Volume	(mins)		
					(m³)	(m³)				
	1.5	min Su	mmer f	55.469	0.0	979.2	2	21		
	30	min Sur	mmer 4	14.986	0.0	1049.1	L	36		
	60	min Sur	mmer 2	29.349	0.0	2036.1	L	64		
	120	min Su	mmer 1	18.713	0.0	2128.4	1 1	.22		
	180	min Sur	mmer 1	4.285	0.0	2190.4	1 1	82		
	240	min Sur	mmer 1	1.771	0.0	2238.7	7 2	242		
	360	min Sur	mmer	8.943	0.0	2313.8	3 3	864		
	480	min Sur	mmer	7.351	0.0	2372.6	6 <u>4</u>	182		
	600	min Sur	mmer	6.311	0.0	2421.7	7 6	502		
	720	min Sur	mmer	5.571	0.0	2464.2	2 7	22		
	960	min Sur	mmer	4.574	0.0	2534.2	2 9	962		

960 min Summer

4320 min Summer

5760 min Summer

7200 min Summer

8640 min Summer

10080 min Summer

1.621

1.328

1.137

1.002

0.900

1440 min Summer 3.463 0.0

2160 min Summer 2.620

15 min Winter 65.469

2880 min Summer 2.147

1216

1472

2016

2640

2888

2544

2360

992

21

2596.4

2824.6

2924.6

3079.2

3205.3

3307.5

3396.0

3473.6

1001.6

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

DBFL Consulting Engineers		Page 2
Ormond House	170024	
Upper Ormond Quay	Newcastle South	
Dublin 7	Attenuation 1B (30 years)	Micro
Date 02/07/2019	Designed by FNS	
File 170024- Attenuation	Checked by NCG	Diamage
Innovyze	Source Control 2018.1	1

	Summary c	of Resu	ilts :	<u>for 30 year</u>	Return	Period	(+10%)	<u>)</u>
	Storm Event	Max Level (m)	Max Depth (m)	Max Infiltration (l/s)	Max Control X (l/s)	Max E Outflow (l/s)	Max Volume (m³)	Status
30	min Winter	92.076	0.476	0.0	16.8	16.8	266.7	ОК
60	min Winter	92.197	0.597	0.0	17.2	17.2	334.6	ΟK
120	min Winter	92.320	0.720	0.0	17.3	17.3	403.0	ΟK
180	min Winter	92.400	0.800	0.0	17.3	17.3	448.1	ΟK
240	min Winter	92.468	0.868	0.0	17.3	17.3	485.8	ΟK
360	min Winter	92.584	0.984	0.0	17.3	17.3	551.2	ΟK
480	min Winter	92.685	1.085	0.0	17.3	17.3	607.7	ΟK
600	min Winter	92.751	1.151	0.0	17.3	17.3	644.8	ΟK
720	min Winter	92.818	1.218	0.0	17.3	17.3	682.2	ΟK
960	min Winter	92.938	1.338	0.0	17.3	17.3	749.2	ΟK
1440	min Winter	93.076	1.476	0.0	17.3	17.3	826.7	ΟK
2160	min Winter	93.072	1.472	0.0	17.3	17.3	824.3	ΟK
2880	min Winter	92.973	1.373	0.0	17.3	17.3	769.1	ΟK
4320	min Winter	92.694	1.094	0.0	17.3	17.3	612.4	ΟK
5760	min Winter	92.152	0.552	0.0	17.1	17.1	309.3	ΟK
7200	min Winter	91.887	0.287	0.0	15.1	15.1	160.7	ΟK
8640	min Winter	91.811	0.211	0.0	13.8	13.8	118.4	ΟK
10080	min Winter	91.795	0.195	0.0	13.4	13.4	109.2	ΟK

	Stor	m	Rain	Flooded	Discharge	Time-Peak
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
30	min	Winter	44.986	0.0	1080.0	35
60	min	Winter	29.349	0.0	2076.3	64
120	min	Winter	18.713	0.0	2179.7	120
180	min	Winter	14.285	0.0	2249.1	180
240	min	Winter	11.771	0.0	2303.2	238
360	min	Winter	8.943	0.0	2387.3	356
480	min	Winter	7.351	0.0	2453.2	472
600	min	Winter	6.311	0.0	2508.0	588
720	min	Winter	5.571	0.0	2554.4	708
960	min	Winter	4.574	0.0	2615.4	944
1440	min	Winter	3.463	0.0	2514.0	1372
2160	min	Winter	2.620	0.0	2953.5	2116
2880	min	Winter	2.147	0.0	3065.6	2392
4320	min	Winter	1.621	0.0	3239.4	2692
5760	min	Winter	1.328	0.0	3380.1	2744
7200	min	Winter	1.137	0.0	3494.6	2648
8640	min	Winter	1.002	0.0	3593.8	2480
10080	min	Winter	0.900	0.0	3681.2	1040

DBFL Consulting Engineers		Page 3
Ormond House	170024	
Upper Ormond Quay	Newcastle South	
Dublin 7	Attenuation 1B (30 years)	Mirro
Date 02/07/2019	Designed by FNS	
File 170024- Attenuation	Checked by NCG	Diamage
Innovyze	Source Control 2018.1	

<u>Rainfall Details</u>

Rainfall Model	FSR	Winter Storms	Yes
Return Period (years)	30	Cv (Summer)	0.750
Region	Scotland and Ireland	Cv (Winter)	0.840
M5-60 (mm)	17.700	Shortest Storm (mins)	15
Ratio R	0.271	Longest Storm (mins)	10080
Summer Storms	Yes	Climate Change %	+10

<u>Time Area Diagram</u>

Total Area (ha) 1.523

Time	(mins)	Area	Time	(mins)	Area
From:	To:	(ha)	From:	To:	(ha)
0	4	0.686	4	8	0.837

DBFL Consulting Engineers				Page 4			
Ormond House	170024						
Upper Ormond Quay	Newcast	le South					
Dublin 7	Attenua	tion 1B (30 vea	rs)	Micco			
$D_{a+e} 0.2/07/2019$	Date 02/07/2019 Designed by FNS						
File 170024- Attenuation	Checked	by NCC		Drainage			
	Checked	Dy NCG					
Innovyze	Source	Control 2018.1					
	Vedel Det						
<u>+</u>	MOUEL DE	<u>ails</u>					
Storage is Or	nline Cove	c Level (m) 94.600					
Cellula	<u>r Storag</u>	<u>e Structure</u>					
Inve	rt Level (n) 91.600 Safety H	Tactor 2.0				
Infiltration Coefficient	Base (m/h Side (m/h	r) 0.00000 Poi	rosity 1.00				
	510e (10/11	1) 0.00000					
Depth (m) Area (m ²) Inf. Ar	ea (m²) De	pth (m) Area (m²)	Inf. Area (m	1 ²)			
0.000 560.0	0.0	1.400 560.0	(0.0			
0.100 560.0	0.0	1.500 560.0	C	0.0			
0.200 560.0	0.0	1.600 560.0	C	0.0			
0.300 560.0	0.0	1.700 0.0	C	0.0			
0.400 560.0	0.0	1.800 0.0	C	0.0			
0.500 560.0	0.0	1.900 0.0	(0.0			
0.600 560.0	0.0	2.000 0.0	(.0			
	0.0	2.100 419.0	(0.0			
	0.0	2.200 419.0	(
	0.0	2 400 419 0	(0			
1.100 560.0	0.0	2.500 419.0	(0.0			
1.200 560.0	0.0	2.600 419.0	C	0.0			
1.300 560.0	0.0	2.700 0.0	C	0.0			
<u>Hydro-Brake®</u>	<u>Optimum</u>	Outflow Contro	1				
	Deferre	ND 0100 0100 1010	0700 1010				
Unit	t Reference m Head (m)	MD-SHE-0165-1810-	2 700-1810				
Design	Flow (1/s)		18.1				
200191	Flush-Flo	۹ C	alculated				
	Objective	e Minimise upstrea	m storage				
2	Application	1	Surface				
Sum	p Available	2	Yes				
Dia	ameter (mm)		165				
Invert	t Level (m)		91.600				
Minimum Outlet Pipe Dia	ameter (mm)		225				
Suggested Mannore Dia	ameter (mm,		1800				
Control Points Head (m) Flo	w (l/s)	Control Points	Head (m) Flow (l/s)			
Design Point (Calculated) 2,700	18.1	Kick	-Flo® 14	75 13.6			
Flush-Flo™ 0.715	17.3 Me	an Flow over Head H	Range	- 15.4			
	I						
The hydrological calculations have be	een based o	on the Head/Dischar	ge relations	hip for the			
Hydro-Brake® Optimum as specified.	Should anot	ther type of contro	l device oth	er than a			
Hydro-Brake Optimum® be utilised then	n these sto	orage routing calcu	Lations will	be			
invalidated							
©198	82-2018	Innovyze					

DBFL Consulting Engineers		Page 5
Ormond House	170024	
Upper Ormond Quay	Newcastle South	
Dublin 7	Attenuation 1B (30 years)	Mirro
Date 02/07/2019	Designed by FNS	
File 170024- Attenuation	Checked by NCG	Diamage
Innovyze	Source Control 2018.1	

	<u>Hydro-Brake® Optimum Outflow Control</u>								
Depth (m) Fl	.ow (1/s)	Depth (m) Flo	ow (l/s)	Depth (m) Flo	w (l/s)	Depth (m)	Flow (l/s)		
0.100	5.9	1,200	16.1	3,000	19.0	7.000	28.6		
0.200	13.5	1.400	14.5	3.500	20.5	7.500	29.5		
0.300	15.3	1.600	14.1	4.000	21.8	8.000	30.5		
0.400	16.3	1.800	14.9	4.500	23.1	8.500	31.4		
0.500	16.9	2.000	15.7	5.000	24.3	9.000	32.2		
0.600	17.2	2.200	16.4	5.500	25.4	9.500	33.1		
0.800	17.3	2.400	17.1	6.000	26.5				
1.000	16.9	2.600	17.8	6.500	27.6				

DBFL Consulting En	gineers				Page 1
Ormond House	-	170024			
Upper Ormond Quay		Newcastle	South		
Dublin 7		Attenuatio	1B (100	vears)	
$D_{2} = 02/07/2019$		Designed	T ENG	yearsy	– MICrO
Date 02/07/2019			DY FNS		Drainage
FILE 170024- Atten	ualion	Checked by	/ NCG		
Innovyze		Source Cor	ntrol 2018	.1	
		- 100			,
<u>Summary</u>	of Results f	or 100 year	<u>r Return P</u>	<u>eriod (+10%</u>	<u>;)</u>
	Half Dr	ain Time : 492	2 minutes.		
Storm	Max Max	Max	Max N	Max Max	Status
Event	Level Depth	Infiltration	Control E Ou	utflow Volume	
	(m) (m)	(1/s)	(l/s) (l	L/s) (m³)	
15 min Sum	per 92 012 0 112	0.0	16.4	16 / 230 5	0 K
30 min Sum	er 92.159 0.559	0.0	17.1	17.1 312.9	0 K
60 min Sumr	ner 92.299 0.699	0.0	17.3	17.3 391.5	0 K
120 min Sumr	ner 92.440 0.840	0.0	17.3	17.3 470.5	ΟK
180 min Sumr	ner 92.531 0.931	0.0	17.3	17.3 521.6	0 K
240 min Sumr	ner 92.607 1.007	0.0	17.3	17.3 563.9	0 K
360 min Sumr	ner 92.737 1.137	0.0	17.3	17.3 636.9	0 K
480 min Sumr	ner 92.851 1.251	0.0	17.3	17.3 700.3	O K
600 min Sumr	ner 92.931 1.331	0.0	17.3	17.3 745.1	0 K
720 min Sumr	ner 93.017 1.417	0.0	17.3	17.3 793.3	0 K
960 min Sumr	ner 93.170 1.570	0.0	17.3	17.3 879.5	0 K
1440 min Sumr	ner 93.681 2.081	0.0	17.3	17.3 922.1	0 K
2160 min Sumr	ner 93.639 2.039	0.0	17.3	17.3 915.5	0 K
2880 min Sumr	ner 93.650 2.050	0.0	17.3	17.3 916.4	0 K
4320 min Sumr	er 93.049 1.449	0.0	17.3	17.3 811.5	0 K
5760 min Sumr	er 92.279 0.679	0.0	17.3	17.3 380.2	0 K
7200 min Sumr	er 91.847 0.247	0.0	14.5	14.5 138.3	ОК
8640 min Sumr	er 91.803 0.203	0.0	13.6	13.6 113.9	OK
10080 min Sumr	er 91.792 0.192	0.0	13.3	13.3 107.4	OK
LS MIII WIII	er 92.005 0.405	0.0	10.7	10.7 239.2	0 K
	Storm	Rain Flooder	l Discharge '	Time-Peak	
	Event (mm/hr) Volume	Volume	(mins)	
	((m ³)	(m ³)	,,	
	15 min Summer	85.043 0.0	1035.1	22	
	30 min Summer	58.731 0.0	1127.6	36	
	60 min Summer	38.058 0.0	2135.6	66	
	L20 min Summer	24.044 0.0	2250.2	124	
	180 min Summer	18.236 0.0	2325.8	184	
	240 min Summer	14.954 0.0	2384.1	244	

3	60 min	n Summer	11.279	0.0	2473.8	364	
4	80 min	n Summer	9.222	0.0	2543.1	484	
6	00 min	n Summer	7.884	0.0	2597.0	604	
-	20 min	n Summer	6.935	0.0	2622.5	726	
<u>c</u>	60 min	n Summer	5.663	0.0	2520.1	966	
14	40 min	n Summer	4.255	0.0	2404.0	1310	
21	60 min	n Summer	3.193	0.0	3059.7	1708	
28	80 min	n Summer	2.601	0.0	3172.8	2224	
43	20 min	n Summer	1.946	0.0	3346.3	2724	
57	60 min	n Summer	1.583	0.0	3485.5	3000	
72	00 min	n Summer	1.349	0.0	3597.8	3752	
86	40 min	n Summer	1.183	0.0	3694.6	4416	
100	80 min	n Summer	1.059	0.0	3779.4	1016	
	15 min	n Winter	85.043	0.0	1064.2	22	
		©1	982-2018	Innovy	ze		

DBFL Consulting Engineers		Page 2
Ormond House	170024	
Upper Ormond Quay	Newcastle South	
Dublin 7	Attenuation 1B (100 years)	Micro
Date 02/07/2019	Designed by FNS	
File 170024- Attenuation	Checked by NCG	Diamage
Innovyze	Source Control 2018.1	

i	<u>Summary o</u>	<u>f Resu</u>	lts f	or 100 year	r Return	Period	(+10%)
	Storm Event	Max Level (m)	Max Depth (m)	Max Infiltration (l/s)	Max Control Σ (l/s)	Max Outflow (1/s)	Max Volume (m³)	Status
30	min Winter	92.230	0.630	0.0	17.3	17.3	352.5	ΟK
60	min Winter	92.391	0.791	0.0	17.3	17.3	442.8	ΟK
120	min Winter	92.555	0.955	0.0	17.3	17.3	534.7	ΟK
180	min Winter	92.661	1.061	0.0	17.3	17.3	594.0	ΟK
240	min Winter	92.748	1.148	0.0	17.3	17.3	642.7	ΟK
360	min Winter	92.898	1.298	0.0	17.3	17.3	726.8	ΟK
480	min Winter	93.034	1.434	0.0	17.3	17.3	802.8	ΟK
600	min Winter	93.135	1.535	0.0	17.3	17.3	859.9	0 K
720	min Winter	93.239	1.639	0.0	17.3	17.3	910.5	ΟK
960	min Winter	93.793	2.193	0.0	17.3	17.3	967.8	0 K
1440	min Winter	93.904	2.304	0.0	17.3	17.3	1014.0	O K
2160	min Winter	93.874	2.274	0.0	17.3	17.3	1001.7	ΟK
2880	min Winter	93.877	2.277	0.0	17.3	17.3	1002.7	ΟK
4320	min Winter	93.131	1.531	0.0	17.3	17.3	857.3	ΟK
5760	min Winter	92.308	0.708	0.0	17.3	17.3	396.7	ΟK
7200	min Winter	91.930	0.330	0.0	15.7	15.7	185.0	ΟK
8640	min Winter	91.828	0.228	0.0	14.1	14.1	127.7	ΟK
10080	min Winter	91.801	0.201	0.0	13.6	13.6	112.8	ΟK

	Stor Even	m .t	Rain (mm/hr)	Flooded Volume	Discharge Volume	Time-Peak (mins)
				(m³)	(m³)	
30	min	Winter	58.731	0.0	1167.8	36
60	min	Winter	38.058	0.0	2187.8	64
120	min	Winter	24.044	0.0	2316.1	122
180	min	Winter	18.236	0.0	2400.8	180
240	min	Winter	14.954	0.0	2466.1	240
360	min	Winter	11.279	0.0	2566.2	360
480	min	Winter	9.222	0.0	2634.6	480
600	min	Winter	7.884	0.0	2592.9	598
720	min	Winter	6.935	0.0	2541.2	716
960	min	Winter	5.663	0.0	2525.6	942
1440	min	Winter	4.255	0.0	2454.3	1334
2160	min	Winter	3.193	0.0	3217.2	1712
2880	min	Winter	2.601	0.0	3343.8	2244
4320	min	Winter	1.946	0.0	3538.5	2792
5760	min	Winter	1.583	0.0	3693.9	2840
7200	min	Winter	1.349	0.0	3819.7	2680
8640	min	Winter	1.183	0.0	3928.3	2536
10080	min	Winter	1.059	0.0	4023.7	1072

DBFL Consulting Engineers		Page 3
Ormond House	170024	
Upper Ormond Quay	Newcastle South	
Dublin 7	Attenuation 1B (100 years)	Mirro
Date 02/07/2019	Designed by FNS	
File 170024- Attenuation	Checked by NCG	Diamage
Innovyze	Source Control 2018.1	

<u>Rainfall Details</u>

Rainfall Model	FSR	Winter Storms	Yes
Return Period (years)	100	Cv (Summer)	0.750
Region	Scotland and Ireland	Cv (Winter)	0.840
M5-60 (mm)	17.700	Shortest Storm (mins)	15
Ratio R	0.271	Longest Storm (mins)	10080
Summer Storms	Yes	Climate Change %	+10

<u>Time Area Diagram</u>

Total Area (ha) 1.523

Time	(mins)	Area	Time	(mins)	Area
From:	To:	(ha)	From:	To:	(ha)
0	4	0.686	4	8	0.837

DBFL Consulting Engineers]	Page 4					
Ormond House	170024			ſ						
Upper Ormond Quay	Newcast	Newcastle South								
Dublin 7	Attenua	ation 1B								
$D_{a+e} = 0.2/0.7/2019$		MICIO								
Eile 170024 = Attenuation	Chockor	ht NCC			Drainage					
	Checked		010 1							
Innovyze	Source	Control 2	2018.1							
MOQEI DETAILS										
Storage is Or	uline Cove	er Level (m)	94,600							
			51.000							
Cellula	r Stora	ge Structi	ure							
		-								
Inve	rt Level	(m) 91.600	Safety Fact	or 2.0						
Infiltration Coefficient	Base (m/h	r) 0.00000	Porosi	ty 1.00						
	side (m/i	11) 0.00000								
Depth (m) Area (m²) Inf. Ar	ea (m²) D	epth (m) Ar	ea (m²) Inf.	. Area (m²)					
0.000 560.0		1 /00	560 0	0	0					
0.100 560.0	0.0	1.500	560.0	0.	0					
0.200 560.0	0.0	1.600	560.0	0.	0					
0.300 560.0	0.0	1.700	0.0	0.	0					
0.400 560.0	0.0	1.800	0.0	0.	0					
0.500 560.0	0.0	1.900	0.0	0.	0					
0.600 560.0	0.0	2.000	0.0	0.	0					
0.700 560.0	0.0	2.100	419.0	0.	0					
0.800 560.0	0.0	2.200	419.0	0.	0					
0.900 560.0	0.0	2.300	419.0	0.	0					
1.000 560.0	0.0	2.400	419.0	0.	0					
1.100 560.0	0.0	2.500	419.0	0.	0					
1.200 560.0	0.0	2.600	419.0	0.	0					
1.300 560.0	0.0	2.700	0.0	0.	0					
Under Ducks	0		C = = + = = 1							
<u>Hydro-Brake®</u>	<u>Optimur</u>	<u>n Outilow</u>	Control							
Unit	- Referenc	MD_SHE_01	65-1810-2700)_1810						
Desic	n Head (m)	05-1010-2700	2.700						
Design	Flow (1/s	()		18 1						
Debigii	Flush-Flo	jTM	Calcu	lated						
	Objectiv	re Minimise	upstream st	corage						
	Applicatic	n	Su	irface						
Sump	Availabl	e		Yes						
Dia	ameter (mm	1)		165						
Invert	: Level (m	1)	9	91.600						
Minimum Outlet Pipe Dia	ameter (mm	1)		225						
Suggested Manhole Dia	ameter (mm	1)		1800						
Control Points Head (m) Flo	w (l/s)	Control	Points	Head (m) Flow (l/s)					
Design Point (Calculated) 2.700 Flush-Flo™ 0.715	18.1 17.3 M	ean Flow ove	Kick-Flo er Head Rang	® 1.47 e	5 13.6 - 15.4					
The hydrological calculations have be	een based	on the Head	/Discharge r	relationsh	ip for the					
Hydro-Brake® Optimum as specified.	Should and	other type o	f control de	evice othe	r than a					
Hydro-Brake Optimum® be utilised ther	n these st	orage routi	ng calculati	ons will	be					
invalidated										
©198	32-2018	Innovyze								

DBFL Consulting Engineers		Page 5
Ormond House	170024	
Upper Ormond Quay	Newcastle South	
Dublin 7	Attenuation 1B (100 years)	Mirro
Date 02/07/2019	Designed by FNS	
File 170024- Attenuation	Checked by NCG	Diamage
Innovyze	Source Control 2018.1	

Hydro-Brake® Optimum Outflow Control									
Donth (m)	\mathbf{E}	Donth (m) E	1 or (1 / o)	Donth (m)	\mathbf{E} low (1/a)	Donth (m)	E_{1}		
Depth (m)	FIOW (1/S)	Берсп (ш) ғ	10% (1/5)	Depth (m)	FIOW (1/S)	Depth (m)	FIOW (1/S)		
0.100	5.9	1.200	16.1	3.000	19.0	7.000	28.6		
0.200	13.5	1.400	14.5	3.500	20.5	7.500	29.5		
0.300	15.3	1.600	14.1	4.000	21.8	8.000	30.5		
0.400	16.3	1.800	14.9	4.500	23.1	8.500	31.4		
0.500	16.9	2.000	15.7	5.000	24.3	9.000	32.2		
0.600	17.2	2.200	16.4	5.500	25.4	9.500	33.1		
0.800	17.3	2.400	17.1	6.000	26.5				
1.000	16.9	2.600	17.8	6.500	27.6				

[
DBFL Consul	ting	g Engi	neers							Page	1
Ormond Hous	е				1700	24					
Upper Ormond Quay						Newcastle South					
Dublin 7		_			Atte	enuatio	on Area	1C (30	vrs)	Mic	
Date 02/07/	2010	2			Desi	aned h	W FNS	- (1 - /		U
File 170024	_ D+	-tenua	tion		Chec	sked by	V NCC			Drai	naqe
	110		CION		Cilec		tuel 2	010 1			
Innovyze					Sour	rce cor	itrol Z	018.1			
	~		6 D		c 0	0		- · ·	(100	、	
	<u>Sum</u>	<u>mary c</u>	<u>pi Res</u> i	ults i	tor 3	<u>0 year</u>	Return	<u>Period</u>	(+10%)	
				alf Dec	oin mi.		1				
			н	all Dra	ain Ti	ine : 154	ininutes	•			
	Stor	m	Max	Max	M	lax	Max	Max	Max	Status	
	Even	t	Level	Depth	Infil	tration	Control	Σ Outflow	Volume		
			(m)	(m)	(1	/s)	(1/s)	(1/s)	(m³)		
15	min	Summer	88.757	0.357		0.0	23.2	23.2	130.4	ОК	
30	min	Summer	88.870	0.470		0.0	23.8	23.8	171.5	ОК	
60	min	Summer	88.956	0.556		0.0	24.0	24.0	202.8	ОК	
120	min	Summer	89.004	0.604		0.0	24.0	24.0	220.4	ΟK	
180	min	Summer	89.022	0.622		0.0	24.0	24.0	227.1	O K	
240	min	Summer	89.041	0.641		0.0	24.0	24.0	234.0	ΟK	
360	min	Summer	89.106	0.706		0.0	24.0	24.0	257.6	ΟK	
480	min	Summer	89.187	0.787		0.0	24.0	24.0	287.2	ΟK	
600	min	Summer	89.261	0.861		0.0	24.0	24.0	314.1	ОК	
720	min	Summer	89.331	0.931		0.0	24.0	24.0	339.8	ОК	
960	mın	Summer	89.449	1.049		0.0	24.0	24.0	382.8	OK	
1440	min	Summer	89.481	1.081		0.0	24.0	24.0	394.5	OK	
2880	min	Summer	89 273	0 873		0.0	24.0	24.0	318 5	0 K	
4320	min	Summer	88.933	0.533		0.0	24.0	24.0	194.4	0 K	
5760	min	Summer	88.818	0.418		0.0	23.6	23.6	152.4	ΟK	
7200	min	Summer	88.538	0.138		0.0	19.8	19.8	50.4	ОК	
8640	min	Summer	88.505	0.105		0.0	18.4	18.4	38.4	ОК	
10080	min	Summer	88.500	0.100		0.0	17.9	17.9	36.4	ΟK	
15	min	Winter	88.806	0.406		0.0	23.5	23.5	148.0	O K	
			Storm		Dain	Flooder	Dischar	an Time-D	ook		
			Event	(1	mm/hr)	Volume	Volum	ge iime ro			
			Lvenc	(1	,	(m ³)	(m ³)	e (m±115	·,		
		15	min Sur	nmer 6	65.469	0.0) 1291	.6	20		
		30	min Sur	nmer 4	44.986	0.0	1348	.4	33		
		60	min Sur	nmer 2	29.349	0.0	2670	.9	6U		
		120	min Sur	nmer 1	14 205	0.0) 2745	. 0	98 196		
		240 18U	min Sur	uner 1	11 771	0.0) 2/96	.0	176		
		240 360	min Sur	nmer 1	8 943	0.0) 2000) 2806	··-	270		
		480	min Sur	nmer	7.351	0.0) 2943	.8	364		
		600	min Sur	nmer	6.311	0.0	2983	.6	462		
		720	min Sur	nmer	5.571	0.0) 3018	.3	580		

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

©1982-2018 Innovyze

3076.9

3169.0

3303.3

3384.8

3511.6

3613.3

3695.9

3767.7

3832.1

1309.8

742

928

1404

1704

2464

2880

2880

2880

728

20

4.574

3.463

1.621

1.328

1.137

1.002

0.900

960 min Summer

1440 min Summer

4320 min Summer

5760 min Summer

7200 min Summer

8640 min Summer

10080 min Summer

2160 min Summer 2.620

2880 min Summer 2.147

15 min Winter 65.469

DBFL Consulting Engineers		Page 2
Ormond House	170024	
Upper Ormond Quay	Newcastle South	
Dublin 7	Attenuation Area 1C (30 yrs)	Mirro
Date 02/07/2019	Designed by FNS	
File 170024- Attenuation	Checked by NCG	Diamage
Innovyze	Source Control 2018.1	

	Summary o	of Resi	<u>ilts :</u>	<u>for 30 year</u>	Return	Period	(+10%)	<u>)</u>
	Storm	Max	Max	Max	Max	Max	Max	Status
	Event	Level (m)	Depth (m)	Infiltration (1/s)	Control X (1/s)	Coutflow (1/s)	Volume (m³)	
30	min Winter	88.936	0.536	0.0	24.0	24.0	195.8	ОК
60	min Winter	89.043	0.643	0.0	24.0	24.0	234.6	ΟK
120	min Winter	89.103	0.703	0.0	24.0	24.0	256.6	ΟK
180	min Winter	89.122	0.722	0.0	24.0	24.0	263.7	0 K
240	min Winter	89.144	0.744	0.0	24.0	24.0	271.5	0 K
360	min Winter	89.218	0.818	0.0	24.0	24.0	298.7	ΟK
480	min Winter	89.307	0.907	0.0	24.0	24.0	331.1	ΟK
600	min Winter	89.400	1.000	0.0	24.0	24.0	364.9	0 K
720	min Winter	89.492	1.092	0.0	24.0	24.0	398.5	ΟK
960	min Winter	89.612	1.212	0.0	24.0	24.0	442.4	O K
1440	min Winter	89.611	1.211	0.0	24.0	24.0	442.2	ΟK
2160	min Winter	89.504	1.104	0.0	24.0	24.0	403.1	ΟK
2880	min Winter	89.244	0.844	0.0	24.0	24.0	307.9	ΟK
4320	min Winter	88.843	0.443	0.0	23.7	23.7	161.8	ΟK
5760	min Winter	88.754	0.354	0.0	23.1	23.1	129.3	ΟK
7200	min Winter	88.579	0.179	0.0	20.8	20.8	65.3	ΟK
8640	min Winter	88.520	0.120	0.0	19.3	19.3	43.8	ΟK
10080	min Winter	88.505	0.105	0.0	18.4	18.4	38.4	ΟK

Stor	m	Rain	Flooded	Discharge	Time-Peak
Even	t	(mm/hr)	Volume	Volume	(mins)
			(m³)	(m³)	
min	Wintor	11 000	0 0	1272 2	22
	WINCEL	44.900	0.0	1373.3	55
mın	Winter	29.349	0.0	2703.5	60
min	Winter	18.713	0.0	2787.2	114
min	Winter	14.285	0.0	2843.6	148
min	Winter	11.771	0.0	2887.5	194
min	Winter	8.943	0.0	2955.7	338
min	Winter	7.351	0.0	3009.1	452
min	Winter	6.311	0.0	3053.8	572
min	Winter	5.571	0.0	3092.6	690
min	Winter	4.574	0.0	3158.3	830
min	Winter	3.463	0.0	3261.4	1118
min	Winter	2.620	0.0	3408.1	1532
min	Winter	2.147	0.0	3499.3	1796
min	Winter	1.621	0.0	3641.5	2596
min	Winter	1.328	0.0	3755.1	2880
min	Winter	1.137	0.0	3848.1	2880
min	Winter	1.002	0.0	3929.0	2880
min	Winter	0.900	0.0	4000.3	2880
	Stor Even min min min min min min min min min mi	Storm Event min Winter min Winter	StormRainEvent(mm/hr)min Winter44.986min Winter29.349min Winter18.713min Winter14.285min Winter11.771min Winter8.943min Winter6.311min Winter5.571min Winter4.543min Winter3.463min Winter2.620min Winter1.621min Winter1.328min Winter1.328min Winter1.002min Winter0.900	Storm Rain Flooded Event (mm/hr) Volume (m³) min Winter 44.986 0.0 min Winter 29.349 0.0 min Winter 18.713 0.0 min Winter 14.285 0.0 min Winter 11.771 0.0 min Winter 8.943 0.0 min Winter 6.311 0.0 min Winter 5.571 0.0 min Winter 3.463 0.0 min Winter 2.620 0.0 min Winter 1.621 0.0 min Winter 1.621 0.0 min Winter 1.328 0.0 min Winter 1.328 0.0 min Winter 1.137 0.0 min Winter 1.002 0.0	Storm Rain Flooded Discharge Event (mm/hr) Volume (m³) Volume (m³) min Winter 44.986 0.0 1373.3 min Winter 29.349 0.0 2703.5 min Winter 18.713 0.0 2787.2 min Winter 14.285 0.0 2843.6 min Winter 11.771 0.0 2887.5 min Winter 8.943 0.0 2955.7 min Winter 6.311 0.0 3092.6 min Winter 5.571 0.0 3092.6 min Winter 3.463 0.0 3261.4 min Winter 2.620 0.0 3408.1 min Winter 2.620 0.0 3408.1 min Winter 1.621 0.0 349.3 min Winter 1.328 0.0 3755.1 min Winter 1.328 0.0 3755.1 min Winter 1.02 0.0 3492.3 min Winter 1.02 0.0<

DBFL Consulting Engineers		Page 3
Ormond House	170024	
Upper Ormond Quay	Newcastle South	
Dublin 7	Attenuation Area 1C (30 yrs)	Mirro
Date 02/07/2019	Designed by FNS	
File 170024- Attenuation	Checked by NCG	Diamage
Innovyze	Source Control 2018.1	

<u>Rainfall Details</u>

Rainfall Model	FSR	Winter Storms	Yes
Return Period (years)	30	Cv (Summer)	0.750
Region	Scotland and Ireland	Cv (Winter)	0.840
M5-60 (mm)	17.700	Shortest Storm (mins)	15
Ratio R	0.271	Longest Storm (mins)	10080
Summer Storms	Yes	Climate Change %	+10

<u>Time Area Diagram</u>

Total Area (ha) 1.235

Time	(mins)	Area	Time	(mins)	Area
From:	To:	(ha)	From:	To:	(ha)
0	4	0.696	4	8	0.539

DBFL Consulting Engineers					Pa	ige 4	l
Ormond House	170024						
Upper Ormond Quay	Newcast	le South					
Dublin 7	Attenua	tion Area	a 1C (3	0 yrs)	N	licco	
Date 02/07/2019	Designe	d by FNS		_			
File 170024- Attenuation	Checked	by NCG				ПЫ	Idge
Innovyze	Source	Control (2018 1				
111100 920	Source	CONCLOI	2010.1				
N	Indel Det	ails					
<u>+-</u>	IOUCI Det	<u>Jails</u>					
Storage is On	line Cover	r Level (m)	91.100				
<u>Cellula</u> :	<u>r Storag</u>	e Struct	ure				
Inver	rt Level (1	m) 88.400	Safety F	actor 2.	. 0		
Infiltration Coefficient	Base (m/h:	r) 0.00000	Por	cosity 1.0	00		
Infiltration Coefficient	Side (m/h:	r) 0.00000					
Depth (m) Area (m²) Inf. Are	ea (m²) De	pth (m) Ar	ea (m²)	Inf. Area	(m²)		
0.000 365.0	0.0	1.300	365.0		0.0		
0.200 365.0	0.0	1.500	0.0		0.0		
0.300 365.0	0.0	1.600	0.0		0.0		
0.400 365.0	0.0	1.700	0.0		0.0		
0.500 365.0	0.0	1.800	263.0		0.0		
0.600 365.0	0.0	1.900	263.0		0.0		
0.700 365.0	0.0	2.000	263.0		0.0		
0.800 365.0	0.0	2.100	263.0		0.0		
0.900 365.0	0.0	2.200	263.0		0.0		
1.000 365.0	0.0	2.300	263.0		0.0		
1.100 365.0	0.0	2.400	0.0		0.0		
1.200 365.0	0.0	2.500	0.0		0.0		
<u>Hydro-Brake®</u>	Optimum	Outflow	Contro	1			
Unit	Poforona	MD_QUE_01	03-2406-	2500-2406			
Desig	n Head (m)	MD-SHE-01	193-2406-	2 500-2406			
Design	Flow (1/s)			2.500			
200131	Flush-Flo	м	C	alculated			
	Objective	e Minimise	e upstrea	m storage			
A	pplicatior	ı		Surface			
Sump	> Available	2		Yes			
Dia	umeter (mm)	1		193			
Invert	. Level (m)	1		88.300			
Minimum Outlet Pipe Dia Suggested Manhole Dia	meter (mm) meter (mm))		225 1800			
Control Points Head (m) Flow	w (l/s)	Control	L Points	Head	i (m)	Flow	(1/s)
Design Deint (Coleviated) 2 500	24.0		Viol	Elo® 1	506		10 0
Flush-Flo™ 0.720	24.0 Me	an Flow ov	er Head F	lange			21.0
				_		_	
The hydrological calculations have be	en based o	on the Head	l/Dischar	ge relatio	onship	o for	the
Hydro-Brake® Optimum as specified. S	should anot	ther type o	of contro.	l device (other	than	a
nyaro-brake optimume be utilised then	these st	$\gamma \gamma $	LUCE CALCIL	LALLONS W:	LTT De	-	
Invariancea	these sto	orage routi	ing curcu				
Depth (m) Flow (l/s) Depth (m) Flow	w (l/s) De	prage routi	.ow (1/s)	Depth (m) Flo	w (1/:	s)
Depth (m) Flow (1/s) Depth (m) Flow 0.100 6.7 0.200	w (1/s) De	prage routi ppth (m) Fl 0.300	.ow (1/s)	Depth (m) Flo	w (1/ : 22	s) .6
Depth (m) Flow (1/s) Depth (m) Flow 0.100 6.7 0.200	n these sto w (1/s) De 17.9	prage routi ppth (m) Fl 0.300	.ow (1/s) 21.2	Depth (m) Flo	w (1/ : 22	s) .6

DBFL Consulting Engineers		Page 5
Ormond House	170024	
Upper Ormond Quay	Newcastle South	
Dublin 7	Attenuation Area 1C (30 yrs)	Mirro
Date 02/07/2019	Designed by FNS	
File 170024- Attenuation	Checked by NCG	Diamage
Innovyze	Source Control 2018.1	

Hydro-Brake® Optimum Outflow Control									
Depth (m)	Flow (l/s)	Depth (m)	Flow (l/s)	Depth (m)	Flow (l/s)	Depth (m)	Flow (l/s)		
0.500	23.5	1.800	20.5	4.000	30.1	7.500	40.7		
0.600	23.9	2.000	21.6	4.500	31.8	8.000	42.0		
0.800	24.0	2.200	22.6	5.000	33.5	8.500	43.3		
1.000	23.5	2.400	23.6	5.500	35.1	9.000	44.5		
1.200	22.6	2.600	24.5	6.000	36.6	9.500	45.7		
1.400	20.7	3.000	26.2	6.500	38.0				
1.600	19.4	3.500	28.2	7.000	39.4				

DBFL Consulting E	ngineers						Page 1	
Ormond House		17	0024					
Upper Ormond Quay	Jpper Ormond Ouay Newcastle South							
Dublin 7		At.	tenuatio	on Area 1	LC (100	vrs)	Micco	
Date 02/07/2019		De	signed k	TY FNS		1-07		J
$F_{1} = 170024 = 1 + + \infty$	nuation		ockod hr	Z NCC			Drain	age
	Iuacion			/ NCG	10 1			
Innovýze		50	urce Cor	ntrol 201	18.1			
			1 0 0	D	- · ·	(100		
Summar	<u>y or Resu</u>	<u>lts ior</u>	<u>100 yea</u>	<u>r Return</u>	Perioa	(+108	<u>5)</u>	
	Цэ	lf Drain '	Time • 21	1 minutos				
	110	III DIAIN	111110 • 211	L INITIACES.				
Storm	Max	Max	Max	Max	Max	Max	Status	
Event	Level	Depth Inf:	iltration	Control Σ	Outflow	Volume		
	(m)	(m)	(1/s)	(1/s)	(1/s)	(m³)		
15 min Sum	mer 88.877	0.477	0.0	23.8	23.8	174.1	ОК	
30 min Sum	mer 89.038	0.638	0.0	24.0	24.0	232.7	O K	
60 min Sum	mer 89.166	0.766	0.0	24.0	24.0	279.6	O K	
120 min Sum	mer 89.245	0.845	0.0	24.0	24.0	308.3	O K	
180 min Sum	mer 89.275	0.875	0.0	24.0	24.0	319.3	ΟK	
240 min Sum	mer 89.306	0.906	0.0	24.0	24.0	330.9	ОК	
360 min Sum	mer 89.404	1.004	0.0	24.0	24.0	366.4	OK	
480 min Sun	mor 89.519	1.251	0.0	24.0	24.0	408.4	OK	
720 min Sum	mer 90 230	1 830	0.0	24.0	24.0	503 3	0 K 0 K	
960 min Sum	mer 90.345	1.945	0.0	24.0	24.0	533.7	O K	
1440 min Sum	mer 90.357	1.957	0.0	24.0	24.0	536.7	ОК	
2160 min Sum	mer 90.327	1.927	0.0	24.0	24.0	528.8	ΟK	
2880 min Sum	mer 89.670	1.270	0.0	24.0	24.0	463.5	ΟK	
4320 min Sum	mer 89.195	0.795	0.0	24.0	24.0	290.2	O K	
5760 min Sum	mer 88.934	0.534	0.0	24.0	24.0	194.8	ΟK	
7200 min Sum	mer 88.556	0.156	0.0	20.3	20.3	57.0	ΟK	
8640 min Sum	mer 88.509	0.109	0.0	18.7	18.7	39.9	OK	
10080 min Sum	mer 88.501	0.101	0.0	18.0	18.0	37.0	OK	
1.5 IIIII W11	CEI 00.940	0.540	0.0	24.0	24.0	197.9	0 K	
	Storm	Rain	Flooded	d Discharge	e Time-Pe	eak		
	Event	(mm/h	r) Volume	Volume	(mins)		
			(m³)	(m³)				
	15 min Sum	mer 85.04	13 0.0) 1336.8	8	20		
	30 min Sum	mer 58.73	31 0.0) 1412.0	0	34		
	60 min Sum	mer 38.05	58 0.0	2751.5	5	62		
	120 min Sum	mer 24.04	14 0.0	2844.	5 3	L16		
	180 min Sum	mer 18.23	36 0.0	2905.	7 2	L56		
	240 min Sum	mer 14.95	54 0.0	2953.2	1 2	210		
	360 min Sum	mer 11.2	79 0.0	3025.9	9 3	360		
	480 min Sum	mer 9.22	22 0.0	J 3082.4	4 4	180		
	720 min Sum	mer /.88	04 U.(J 3129.	з (а ,	0U∠ 722		

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

©1982-2018 Innovyze

0.0

3169.9

3238.4

3345.1

3495.6

3587.2

3728.4

3840.6

3931.9

4010.5

4081.6

1360.5

722

822

1102

1500

1844

2552

2888

2880

2880

728

21

6.935

5.663

4.255

1.946

1.583

1.349

1.183

1.059

720 min Summer

960 min Summer

1440 min Summer

4320 min Summer

5760 min Summer

7200 min Summer

8640 min Summer

10080 min Summer

2160 min Summer 3.193

2880 min Summer 2.601

15 min Winter 85.043

DBFL Consulting Engineers		Page 2
Ormond House	170024	
Upper Ormond Quay	Newcastle South	
Dublin 7	Attenuation Area 1C (100 yrs)	Micro
Date 02/07/2019	Designed by FNS	Dcainago
File 170024- Attenuation	Checked by NCG	Diamage
Innovyze	Source Control 2018.1	

	<u>Summary o</u>	<u>f Resu</u>	lts f	or 100 yea:	r Return	Period	(+10%)
	Storm Event	Max Level (m)	Max Depth (m)	Max Infiltration (l/s)	Max Control Σ (l/s)	Max Outflow (1/s)	Max Volume (m³)	Status
30	min Winter	89.126	0.726	0.0	24.0	24.0	265.1	ОК
60	min Winter	89.282	0.882	0.0	24.0	24.0	321.9	ОК
120	min Winter	89.392	0.992	0.0	24.0	24.0	362.0	ΟK
180	min Winter	89.436	1.036	0.0	24.0	24.0	378.3	ΟK
240	min Winter	89.481	1.081	0.0	24.0	24.0	394.6	ΟK
360	min Winter	89.599	1.199	0.0	24.0	24.0	437.5	ΟK
480	min Winter	90.166	1.766	0.0	24.0	24.0	489.2	ΟK
600	min Winter	90.336	1.936	0.0	24.0	24.0	531.3	ΟK
720	min Winter	90.462	2.062	0.0	24.0	24.0	564.3	ΟK
960	min Winter	90.573	2.173	0.0	24.0	24.0	593.6	ΟK
1440	min Winter	90.595	2.195	0.0	24.0	24.0	599.4	ΟK
2160	min Winter	90.540	2.140	0.0	24.0	24.0	584.9	ΟK
2880	min Winter	90.210	1.810	0.0	24.0	24.0	498.0	ΟK
4320	min Winter	89.125	0.725	0.0	24.0	24.0	264.5	ΟK
5760	min Winter	88.864	0.464	0.0	23.8	23.8	169.5	ΟK
7200	min Winter	88.613	0.213	0.0	21.4	21.4	77.7	ΟK
8640	min Winter	88.531	0.131	0.0	19.6	19.6	47.7	ΟK
10080	min Winter	88.509	0.109	0.0	18.7	18.7	39.9	ΟK

	Stor	m	Rain	Flooded	Discharge	Time-Peak
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
30	min	Winter	58.731	0.0	1444.7	34
60	min	Winter	38.058	0.0	2793.9	62
120	min	Winter	24.044	0.0	2897.9	118
180	min	Winter	18.236	0.0	2966.6	176
240	min	Winter	14.954	0.0	3019.6	234
360	min	Winter	11.279	0.0	3101.1	352
480	min	Winter	9.222	0.0	3164.4	472
600	min	Winter	7.884	0.0	3217.0	588
720	min	Winter	6.935	0.0	3262.4	700
960	min	Winter	5.663	0.0	3339.1	836
1440	min	Winter	4.255	0.0	3458.5	1112
2160	min	Winter	3.193	0.0	3623.3	1540
2880	min	Winter	2.601	0.0	3725.2	1992
4320	min	Winter	1.946	0.0	3884.7	2812
5760	min	Winter	1.583	0.0	4009.5	2880
7200	min	Winter	1.349	0.0	4111.8	2880
8640	min	Winter	1.183	0.0	4200.4	2880
10080	min	Winter	1.059	0.0	4278.7	2880

DBFL Consulting Engineers		Page 3
Ormond House	170024	
Upper Ormond Quay	Newcastle South	
Dublin 7	Attenuation Area 1C (100 yrs)	Mirro
Date 02/07/2019	Designed by FNS	
File 170024- Attenuation	Checked by NCG	Diamage
Innovyze	Source Control 2018.1	

<u>Rainfall Details</u>

Rainfall Model	FSR	Winter Storms	Yes
Return Period (years)	100	Cv (Summer)	0.750
Region	Scotland and Ireland	Cv (Winter)	0.840
M5-60 (mm)	17.700	Shortest Storm (mins)	15
Ratio R	0.271	Longest Storm (mins)	10080
Summer Storms	Yes	Climate Change %	+10

<u>Time Area Diagram</u>

Total Area (ha) 1.235

Time	(mins)	Area	Time	(mins)	Area
From:	To:	(ha)	From:	To:	(ha)
0	4	0.696	4	8	0.539

DBFL Consulting	Engineers					Pag	e 4
Ormond House		17002	2.4				
Upper Ormond Qua	У	Newca	stle Sou	th			
Dublin 7		Atter	Attenuation Area 1C (100 yrs)				
Date 02/07/2019		Desid	ned by F	NS	_		
File 170024- Att	enuation	Check	ed by NC	G			ainag
		Sourc	e Contro	1 2018 1			
IIIIOVYZE		50u10	e concro	1 2010.1			
		Model	Details				
		HOUCE	Decarro				
	Storage	e is Online C	over Level	(m) 91.100			
	Ce	llular Sto	rage Stru	cture			
	<u></u>	<u>114141 0001</u>	<u>age bera</u>	<u>ccurc</u>			
		Invert Leve	l (m) 88.4	100 Safety F	actor 2.0)	
Infilt	cration Coeff	icient Base (m/hr) 0.000)00 Por	cosity 1.00)	
Infilt	cration Coeff	icient Side (m/hr) 0.000	000			
Depth (m)	Area (m²) I	nf. Area (m²)	Depth (m)	Area (m²)	Inf. Area	(m²)	
0.000	365.0	0.0	1.300	365.0		0.0	
0.100	365.0	0.0	1.400	0.0		0.0	
0.200	365.0	0.0	1.500	0.0		0.0	
0.300	365.0	0.0	1.600	0.0		0.0	
0.400	365.0	0.0	1.700	0.0		0.0	
0.500	365.0	0.0	1.800	263.0		0.0	
0.000	365.0	0.0	2 000	263.0		0.0	
0.700	365 0	0.0	2.000	263.0		0.0	
0.000	365 0	0.0	2 200	263.0		0.0	
1.000	365.0	0.0	2.300	263.0		0.0	
1.100	365.0	0.0	2.400	0.0		0.0	
1.200	365.0	0.0	2.500	0.0		0.0	
	Hydro-B	rake® Ontir	num Outfl	ow Contro	1		
	<u>nyaro b</u>			0 0011010	<u> </u>		
		Unit Refere	ence MD-SHE	-0193-2406-	2500-2406		
		Design Head	(m)		2.500		
]	Design Flow (. Rhugh d	L/S)	G	24.1		
		Flusn-I	flom ivo Minim	iso unstroa	alculated		
		Applicat	-ion	iise upsciedi	Surface		
		Sump Availa	able		Yes		
		Diameter	(mm)		193		
		Invert Level	(m)		88.300		
Mini	mum Outlet P	ipe Diameter	(mm)		225		
Su	ggested Manho	ole Diameter	(mm)		1800		
Control Points	Head (m) Flow (l/s)	Cont	rol Points	Head	(m) F	low (1/s
Design Point (Calcul	ated) 2.5	00 24.0		Kick-	-Flo® 1.	.506	18
Flush	-Flo TM 0.7	20 24.0	Mean Flow	over Head F	Range	-	21
The budgelesist -		anto bass bas	d on the "	and /Dissberg	wa walati.	o ch	for the
The hydrological C	alculations i	ave been base	ed on the H	ead/Dischar	je relation	hor t	lor the
Hydro-Brake Optimi	umme he utilis	ad then these	storage ro	uting calcu	lations wi	llei u	iiaii a
invalidated			SCOLUGE IU	corrig carcu.	TACTONS WI	20	
Depth (m) Flow (l/s) Depth (m) Flow (l/s)	Depth (m)	Flow (l/s)	Depth (m)	Flow	(1/s)
0.100	6.7 0.2	00 17.9	0.300	21.2	0.400		22.6
	I		I		1		
		©1982-201	8 Innovy	ze			
		01702 201	Y2				

DBFL Consulting Engineers		Page 5
Ormond House	170024	
Upper Ormond Quay	Newcastle South	
Dublin 7	Attenuation Area 1C (100 yrs)	Mirro
Date 02/07/2019	Designed by FNS	
File 170024- Attenuation	Checked by NCG	Diamage
Innovyze	Source Control 2018.1	

	<u>H</u>	lydro-Bra	<u>ke® Optim</u>	<u>um Outflc</u>	w Control	<u>l</u>	
Depth (m)	Flow (l/s)	Depth (m)	Flow (l/s)	Depth (m)	Flow (l/s)	Depth (m)	Flow (l/s)
0.500	23.5	1.800	20.5	4.000	30.1	7.500	40.7
0.600	23.9	2.000	21.6	4.500	31.8	8.000	42.0
0.800	24.0	2.200	22.6	5.000	33.5	8.500	43.3
1.000	23.5	2.400	23.6	5.500	35.1	9.000	44.5
1.200	22.6	2.600	24.5	6.000	36.6	9.500	45.7
1.400	20.7	3.000	26.2	6.500	38.0		
1.600	19.4	3.500	28.2	7.000	39.4		

Appendix E

HR WALLINGFORD ATTENUATION CALCULATIONS

Qbar total site area (I/s)

Qbar net site area (l/s)

1 in 1 year (l/s)

1 in 30 years (l/s)

1 in 100 years (l/s)

I

1

1

1

1 L

Surface water storage requirements for sites

www.uksuds.com | Storage estimation tool

Calculated by:				Site coord	inates		
Site name:	Newcastle 1A			Latitude:	53.2957	6° N	
Site location:	South Dublin			Longitude	6.4989°	W	
Fotal site area edite mpermeable area g which is required for	ed to give greater than 50% r online tool	e needed to meet Preliminary rainfa and the SuDS Ma ystems. It is recon uirements and de	normal III runoff nual, C753 mmended ssign	Reference Date:	2019-07-	-04 10:54	
Mathedalami	11404		Imperme storage is Design crit	able area mat s calculated eria	tches de	sign on	which
Methodology	111124		Volume con	trol approach	Flow contr	ol to max o	of 2 l/s/ha oi
Site characteristics	3	$\sqrt{1}$	Climate cha	ande allowance f	actor	Default	Edited
Total site area (ha)		4.72	Linhan cree	n allowance facto	acioi	1.1	1.1
Significant public op	en space (ha)	0		rainfall denth (m	nm)	5	5
Area positively drain	ied (ha)	4.72	Minimum flo	ow rate (I/s))	5	5
Pervious area contri	bution (%)	0	Ober estima	ation mothod			U
Impermeable area (I	Impermeable area (ha)		Quar estimation method Specify Quar manually			tupo	
Percentage of draine	ed area	50	SERESUIN		Calculate	Default	Editod
that is impermeable	that is impermeable (%)		Qbar total s	ite area (l/s)		11.71	12.55
Impervious area dra	Deture period for infiltration (Na)		SOIL type		2	2	
system design (vear)		100	HOST class	3		N/A	N/A
Impervious area drained to			SPR			0.3	0.3
rainwater harvesting	systems (ha)	0	Hydrology			Dofault	Editod
Return period for rai	nwater harvesting	100	SAAR (mm)		911	911
system design (year)		M5-60 Rair	nfall Depth (mm)		17	17
system design (%)	or rainwater narvesting	100	'r' Ratio M5	-60/M5-2 day		0.3	0.3
Net site area for stor	Net site area for storage volume design (ha)		Rainfall 100 yrs 6 hrs			61	
Net impermeable ar	Net impermeable area for storage volume		Rainfall 100 yrs 12 hrs 7		73		
design (ha)		2.36	FEH/FSR c	onversion factor		1	1
Edited to match s	ite characteristics	_	Hydrologica	al region		12	
* Where rainwater harvesting	* Where rainwater harvesting or infiltration has been used for ma water runoff such that the effective impermeable area is less that		Growth curv	Storage regu	uired	0.85	0.85
water runoff such that the effe			Growth curve	Jolorage requ		1.72	1.72
will have been reduced accordingly.		na otner now fates	Growth curve	ve factor: 30 yea	r	2.13	2.13
			Growth curve	ve factor: 100 ye	ar	2.61	2.61
Site discharge rate	S		Estimated	storage volume	- - ·	Dofoult	Editod
	- Derau			())	-	Delault	Eunea

Estimated storage volumes	Default	Edited
Interception storage (m ³)	94	-94
Attenuation storage (m ³)	1248	1218
Long term storage (m ³)	0	0
Treatment storage (m ³)	283	283
Total storage (excluding treatment) (m ³)	1343	1312

This report was produced using the Storage estimation tool developed by HR Wallingford and available at www.uksuds.com. The use of this tool is subject to the UK SuDS terms and conditions and licence agreement, which can both be found at http://uksuds.com/terms-and-conditions.htm. The outputs from this tool have been used to estimate storage volume requirements. The use of these results is the responsibility of the users of this tool. No liability will be accepted by HR Wallingford, the Environment Agency, CEH, Hydrosolutions or any other organisation for use of this data in the design or operational characteristics of any drainage scheme.

11.71

11.71

10

11.7

11.7

12.55

12.55

10.7

12.6

12.6

Calculated by:	
Site name:	Newcastle 1B
Site location:	South Dublin

This is an estimation of the storage volume requirements that are needed to meet normal best practice criteria in line with Environment Agency guidance "Preliminary rainfall runoff management for developments", W5-074/A/TR1/1 rev. E (2012) and the SuDS Manual, C753 (Ciria, 2015). It is not to be used for detailed design of drainage systems. It is recommended that hydraulic modelling software is used to calculate volume requirements and design details before finalising the drainage scheme.

Surface water storage requirements for sites

www.uksuds.com | Storage estimation tool

Site coordinates

Latitude:	53.29713° N
Longitude:	6.49761° W

Reference:

Date:

2019-0

2019-07-04 10:44

Impermeable area matches our design on which storage is calculated

Methodology

Site characteristics

Total site area (ha)	2.62
Significant public open space (ha)	0
Area positively drained (ha)	2.62
Pervious area contribution (%)	0
Impermeable area (ha)	1.53
Percentage of drained area that is impermeable (%)	58
Impervious area drained via infiltration (ha)	0
Return period for infiltration system design (year)	100
Impervious area drained to rainwater harvesting systems (ha)	0
Return period for rainwater harvesting system design (year)	100
Compliance factor for rainwater harvesting system design (%)	100
Net site area for storage volume design (ha)	2.62
Net impermeable area for storage volume design (ha)	1.53

IH124

Edited to match site characteristics

* Where rainwater harvesting or infiltration has been used for maniging surface water runoff such that the effective impermeable area is less than 50 % of the 'area positively drained', the 'net site area' and the estimates of Qbar and other flow rates will have been reduced accordingly.

Site discharge rates	Default	Strited
Qbar total site area (I/s)	6.5	5.56
Qbar net site area (I/s)	6.5	5.56
1 in 1 year (l/s)	5.5	5.2
1 in 30 years (l/s)	6.5	5.6
1 in 100 years (l/s)	6.5	5.6

Design criteria

Volume control approach	Flow control	to max of	2 l/s/ha or
		Default	Edited
Climate change allowance fa	actor	1.1	1.1
Urban creep allowance facto	r	1	1
Interception rainfall depth (m	m)	5	5
Minimum flow rate (I/s)		5	5
Qbar estimation method	Specify Qba	r manually	,
SPR estimation method	Calculate fro	om SOIL ty	ре
		Default	Edited
Qbar total site area (l/s)		6.5	5.56
SOIL type		2	2
HOST class		N/A	N/A
SPR		0.3	0.3
Hydrology		Default	Edited
SAAR (mm)		911	911
M5-60 Rainfall Depth (mm)		17	17
ʻr' Ratio M5-60/M5-2 day		0.3	0.3
Rainfall 100 yrs 6 hrs		61	
Rainfall 100 yrs 12 hrs		73	
FEH/FSR conversion factor		1	1
Hydrological region		12	
Growth curve factor: 1 year		0.85	0.85
Growth curve fac Storage	required	72	1.72
Growth curve factor: 30 year		2.13	2.13
Growth curve factor: 100 year		2.61	2.61
Estimated storage volume	· -		

Estimated storage volumes	Default	Edited
Interception storage (m ³)	61	
Attenuation storage (m ³)	880	926
Long term storage (m ³)	0	0
Treatment storage (m ³)	184	184
Total storage (excluding treatment) (m ³)	941	987

This report was produced using the Storage estimation tool developed by HR Wallingford and available at www.uksuds.com. The use of this tool is subject to the UK SuDS terms and conditions and licence agreement, which can both be found at http://uksuds.com/terms-and-conditions.htm. The outputs from this tool have been used to estimate storage volume requirements. The use of these results is the responsibility of the users of this tool. No liability will be accepted by HR Wallingford, the Environment Agency, CEH, Hydrosolutions or any other organisation for use of this data in the design or operational characteristics of any drainage scheme.

Calculated by:	
Site name:	Newcastle 1C
Site location:	South Dublin

This is an estimation of the storage volume requirements that are needed to meet normal a in line with F vironment Agency quidan

Total site area edited to give impermeable area
greater than 50% which is required for online
tool

IH124

Methodology

ainfall runoff Manual, C753 recommended nd design

Site coordinates

Latitude: 53.29825° N Longitude: 6.49698° W

Reference: Date:

2019-07-04 11:23

Default

149

705

149

713

Edited

Impermeable area matches our design on which storage is calculated

Design criteria

Volume control approach Flow control to max of 2 l/s/ha or

Site characteristics	
Total site area (ha)	2.48
Significant public open space (ha)	0
Area positively drained (ha)	2.48
Pervious area contribution (%)	0
Impermeable area (ha)	1.24
Percentage of drained area that is impermeable (%)	50
Impervious area drained via infiltration (ha)	0
Return period for infiltration system design (year)	100
Impervious area drained to rainwater harvesting systems (ha)	0
Return period for rainwater harvesting system design (year)	100
Compliance factor for rainwater harvesting system design (%)	100
Net site area for storage volume design (ha)	2.48
Net impermeable area for storage volume	1.24
design (ha)	

Edited to match site characteristics

 * Where rainwater harvesting or infiltration has been used for managing surface water runoff such that the effective impermeable area is less than 40 % of the 'area positively drained', the 'net site area' and the estimates of Qbar and other flow rates will have been reduced accordingly.

Site discharge rates	Default	dited
Qbar total site area (l/s)	6.15	5.95
Qbar net site area (l/s)	6.15	5.95
1 in 1 year (l/s)	5.2	5.1
1 in 30 years (l/s)	6.2	6
1 in 100 years (l/s)	6.2	6

Climate change allowance fa	Climate change allowance factor						
Urban creep allowance facto	1	1					
Interception rainfall depth (m	5	5					
Minimum flow rate (I/s)		5	5				
Qbar estimation method	Specify Qba	r manually	,				
SPR estimation method	Calculate fro	om SOIL ty	pe				
		Default	Edited				
Qbar total site area (l/s)		6.15	5.95				
SOIL type		2	2				
HOST class		N/A	N/A				
SPR		0.3	0.3				
Hydrology		Default	Edited				
SAAR (mm)		911	911				
M5-60 Rainfall Depth (mm)		17	17				
ʻr' Ratio M5-60/M5-2 day		0.3	0.3				
Rainfall 100 yrs 6 hrs		61					
Rainfall 100 yrs 12 hrs		73					
FEH/FSR conversion factor		1	1				
Hydrological region		12					
Growth curve factor: 1 year		0.85	0.85				
Gro Storage required		1.72	1.72				
Growth curve factor: 30 year		2.13	2.13				
Growth curve factor: 100 year	ar	2.61	2.61				
Estimated storage volume	• – – – – s	Default	Edited				
Interception storage (m ³)		50	50				
Attenuation storage (m ³)		656	664				
Long term storage (m ³)		0	0				

This report was produced using the Storage estimation tool developed by HR Wallingford and available at www.uksuds.com. The use of this tool is subject to the UK SuDS terms and conditions and licence agreement, which can both be found at http://uksuds.com/terms-and-conditions.htm. The outputs from this tool have been used to estimate storage volume requirements. The use of these results is the responsibility of the users of this tool. No liability will be accepted by HR Wallingford, the Environment Agency, CEH, Hydrosolutions or any other organisation for use of this data in the design or operational characteristics of any drainage scheme.

Treatment storage (m³)

Total storage (excluding treatment) (m³)

Surface water storage requirements for sites

www.uksuds.com | Storage estimation tool

Appendix F

SURFACE WATER NETWORK CALCULATIONS

DBFL Consulting Engineers		Page 1
Ormond House	170024	
Upper Ormond Quay	Newcastle	
Dublin 7	Catchment 1A	Micco
Date 02/07/2019	Designed by FNS	
File 170024- Foul and Storm	Checked by NCG	Urainage
Innovyze	Network 2018 1	
<u>STORM SEWER DESIGN</u> Design Cri	by the Modified Rational Method	
Dino Sizos ST	NUDADD Marbolo Sizos STANDADD	
FSR Rainfall Return Period (years)	Model - Scotland and Ireland	4 戸(&) 100
M5-60 (mm)	17.700 Add Flow / Climate Chang	ge (%) 10
Ratio R	0.271 Minimum Backdrop Heigh	nt (m) 0.200
Maximum Rainfall (mm/hr)	100 Maximum Backdrop Heigh	nt (m) 2.000
Foul Sewage (1/s/ha)	0.000 Min Vel for Auto Design only	(m/s) 1.00
Volumetric Runoff Coeff.	0.750 Min Slope for Optimisation	(1:X) 500
Desigr	ea with Level Soffits	
Time Ares r	iagram for Catchment 11	
Time Area	Time Area Time Area	
(mins) (ha)	(mins) (ha) (mins) (ha)	
	4 0 1 550 0 10 0 100	
0-4 0.818	4-8 1.559 8-12 0.168	
Total Area	Contributing (ha) = 2.344	
Total Pi	pe Volume (m³) = 102.738	
Network Desig	gn Table for Catchment 1A	
PN Length Fall Slope I.Area T. (m) (m) (1:X) (ha) (mi	E. Base k HYD DIA Section ns) Flow (1/s) (mm) SECT (mm)	Type Auto Design
7.000 68.140 0.775 87.9 0.173 4	.00 0.0 0.600 o 225 Pipe/Con	iduit 🔒
7.001 73.305 1.935 37.9 0.085 0	.00 0.0 0.600 o 225 Pipe/Con	iduit 🧍
7.002 18.678 0.740 25.2 0.022 0	.00 0.0 0.600 o 225 Pipe/Cor	duit 🔒
8.000 76.663 1.845 41.6 0.286 4	.00 0.0 0.600 o 225 Pipe/Cor	duit 🔒
Netwo	<u>ork Results Table</u>	
PN Rain T.C. US/IL Σ I. (mm/hr) (mins) (m) (h	Area ΣBase Foul Add Flow Vel C a) Flow (1/s) (1/s) (1/s) (m/s) (1	ap Flow /s) (l/s)
7.000 53.54 4.81 102.575 0	.173 0.0 0.0 2.5 1.40 5	5.5 27.6
7.001 51.37 5.39 101.800 0	.258 0.0 0.0 3.6 2.13 8	4.8 39.5
7.002 50.94 5.51 <mark>99.865</mark> 0	.280 0.0 0.0 3.9 2.62 10	4.0 42.5
8.000 54.30 4.63 <u>102.420</u> 0	.286 0.0 0.0 4.2 2.04 8	0.9 46.3
©19	32-2018 Innovyze	

DBFL Consulting Engineers											ge 2
Ormond	House				17	0024					
Upper O	rmond	Quay			Ne	wcastle					
Dublin	7				Ca	tchment 1	A			NA	icro
Date 02	/07/20	19			De	signed by	FNS				
File 17	0024-	Foul	and S	torm	Ch	ecked by	NCG				מוו ומקצ
Innovyze Network 2018.1										I	
Network Design Table for Catchment 1A											
PN	Length	Fall	Slope	I.Area	T.E.	Base	k (mm)	HYD		Section Type	Auto
	(m)	(m)	(1:X)	(na)	(mins)	FIOW (1/S)	(mm)	SECT	(11111)		Design
9.000	30.877	0.395	78.2	0.073	4.00	0.0	0.600	0	225	Pipe/Conduit	. 🔒
8 001	36 958	0 739	50 0	0 071	0 00	0 0	0 600	0	300	Pipe/Conduit	۵
8.002	54.220	1.101	49.2	0.099	0.00	0.0	0.600	0	300	Pipe/Conduit	
											•
7.003	36.016	0.385	93.5	0.043	0.00	0.0	0.600	0	375	Pipe/Conduit	÷ 🔒
7.004	45.679	0.540	84.6	0.059	0.00	0.0	0.600	0	375	Pipe/Conduit	. 🔒
7.005	9.643	0.120	80.4	0.011	0.00	0.0	0.600	0	375	Pipe/Conduit	•
10.000	29.977	1.119	26.8	0.048	4.00	0.0	0.600	0	225	Pipe/Conduit	A
10.001	11.599	0.396	29.3	0.000	0.00	0.0	0.600	0	225	Pipe/Conduit	i 🧯
7 000	10 007	0 1 0 0	0.2 4	0 010	0 00	0.0	0 600		275	Dine (Genelait	
7.006	10.007	0.120	83.4	0.010	0.00	0.0	0.600	0	375	Pipe/Conduit	. 🖷
7.007	16.986	0.202	84.1	0.026	0.00	0.0	0.600	0	375	Pipe/Conduit	. 👼
7.008	/2.62/	0.333	218.1	0.125	0.00	0.0	0.600	0	450	Pipe/Conduit	. 🚆
7.009	8.323	0.040	208.1	0.000	0.00	0.0	0.600	0	450	Pipe/Conduit	. 🔒
11.000	77.839	1.550	50.2	0.178	4.00	0.0	0.600	0	225	Pipe/Conduit	A
11.001	89.386	2.425	36.9	0.133	0.00	0.0	0.600	0	225	Pipe/Conduit	ē 🥉
12.000	57.042	0.975	58.5	0.190	4.00	0.0	0.600	0	225	Pipe/Conduit	. 🔒

<u>Network Results Table</u>

PN	Rain (mm/hr)	T.C. (mins)	US/IL (m)	Σ I.Area (ha)	Σ Base Flow (l/s)	Foul (l/s)	Add Flow (l/s)	Vel (m/s)	Cap (1/s)	Flow (1/s)
9.000	55.49	4.35	100.970	0.073	0.0	0.0	1.1	1.48	58.9	12.1
8.001	53.18	4.90	100.500	0.430	0.0	0.0	6.2	2.23	157.5	68.1
8.002	51.66	5.31	99.761	0.529	0.0	0.0	7.4	2.25	158.8	81.4
7.003	49.84	5.83	98.585	0.852	0.0	0.0	11.5	1.87	207.0	126.5
7.004	48.59	6.21	98.200	0.911	0.0	0.0	12.0	1.97	217.7	131.9
7.005	48.35	6.29	97.660	0.922	0.0	0.0	12.1	2.02	223.4	132.8
10.000	56.16	4.20	99.990	0.048	0.0	0.0	0.7	2.54	100.9	8.0
10.001	55.81	4.28	98.871	0.048	0.0	0.0	0.7	2.43	96.5	8.0
7.006	48.09	6.38	97.540	0.980	0.0	0.0	12.8	1.99	219.3	140.4
7.007	47.66	6.52	97.420	1.006	0.0	0.0	13.0	1.98	218.4	142.8
7.008	45.20	7.40	97.143	1.131	0.0	0.0	13.8	1.37	218.3	152.3
7.009	44.94	7.50	96.810	1.131	0.0	0.0	13.8	1.41	223.5	152.3
11.000	54.00	4.70	102.650	0.178	0.0	0.0	2.6	1.85	73.6	28.6
11.001	51.35	5.39	101.100	0.311	0.0	0.0	4.3	2.16	86.0	47.6
12.000	54.60	4.55	99.650	0.190	0.0	0.0	2.8	1.71	68.1	30.9
				©1982-20	018 Innov	yze				

DBFL Consulting 1	Page 3							
Ormond House		170024	170024					
Upper Ormond Qua	Y	Newcastle						
Dublin 7		Catchment 1	А	Micro				
Date 02/07/2019		Designed by	' FNS					
File 170024- Fou	l and Storm	Checked by	NCG	Diginarie				
Innovyze		Network 201	8.1					
PN Length Fal (m) (m)	l Slope I.Area T (1:X) (ha) (m	.E. Base ins) Flow (l/s)	k HYD DIA (mm) SECT (mm)	Section Type Auto Design				
11.002 9.107 0.10	0 91.1 0.000	0.00 0.0	0.600 o <mark>300</mark>	Pipe/Conduit 🧯				
7.010 34.705 0.08	7 398.9 0.000	0.00 0.0	0.600 o 525	Pipe/Conduit 🤒				
7.011 49.124 0.10	7 459.1 0.039	0.00 0.0	0.600 o 525	Pipe/Conduit 🥚				
13.000 57.361 1.65	0 34.8 0.199	4.00 0.0	0.600 o 225	Pipe/Conduit 🔒				
14.000 35.214 0.60	0 58.7 0.167	4.00 0.0	0.600 o 225	Pipe/Conduit 🔒				
13.001 74.215 0.87	5 84.8 0.141	0.00 0.0	0.600 o 300	Pipe/Conduit 🦀				
13.002 34.056 0.54	0 63.1 0.040	0.00 0.0	0.600 o 300	Pipe/Conduit 🥚				
15.000 62.502 0.56	3 111.0 0.111	4.00 0.0	0.600 o 225	Pipe/Conduit 🥚				
13.003 3.450 0.03	5 100.0 0.000	0.00 0.0	0.600 o 300	Pipe/Conduit 🥚				
13.004 25.475 0.39	64.2 0.015	0.00 0.0	0.600 o <mark>300</mark>	Pipe/Conduit 🧯				
7.012 8.465 0.10	1 83.8 0.000	0.00 0.0	0.600 o 525	Pipe/Conduit 🥚				
7.013 40.849 0.60	0 68.1 0.000 5 140.7 0.000	0.00 0.0 0.00 0.0	0.600 o 525 0.600 o 525	Pipe/Conduit 🔒 Pipe/Conduit 🔒				

Network Results Table

PN	Rain (mm/hr)	T.C. (mins)	US/IL (m)	Σ I.Area (ha)	Σ Base Flow (l/s)	Foul (1/s)	Add Flow (1/s)	Vel (m/s)	Cap (1/s)	Flow (1/s)
11.002	51.03	5.48	98.600	0.501	0.0	0.0	6.9	1.65	116.5	76.2
7.010 7.011	43.65 41.87	8.02 8.81	96.695 96.608	1.632 1.671	0.0	0.0	19.3 19.3	1.12 1.04	241.4 224.9	212.2 212.2
13.000	55.14	4.43	101.250	0.199	0.0	0.0	3.0	2.23	88.5	32.7
14.000	55.51	4.34	100.200	0.167	0.0	0.0	2.5	1.71	68.0	27.6
13.001	52.23	5.15	99.525	0.507	0.0	0.0	7.2	1.71	120.8	78.9
13.002	51.18	5.44	98.650	0.547	0.0	0.0	7.6	1.98	140.2	83.4
15.000	53.44	4.84	98.470	0.111	0.0	0.0	1.6	1.24	49.3	17.7
13.003	51.05	5.48	97.832	0.658	0.0	0.0	9.1	1.57	111.1	100.1
13.004	50.30	5.69	97.798	0.673	0.0	0.0	9.2	1.97	139.0	100.8
7.012	41.74	8.86	96.501	2.344	0.0	0.0	26.5	2.45	529.9	291.5
7.013	41.21	9.11	95.800	2.344	0.0	0.0	26.5	2.72	588.2	291.5
7.014	40.90	9.27	95.200	2.344	0.0	0.0	26.5	1.89	408.4	291.5

DBFL Consulting Engineers		Page 1
Ormond House	170024	
Upper Ormond Quay	Newcastle	
Dublin /	Catchment IB	Micro
Late 02/07/2019	Checked by MCC	Drainage
Innovyze	Network 2018 1	
	NCCWOIK 2010.1	
STORM SEWER DESIG	N by the Modified Ra	tional Method
Dine Sizes	CTANDARD Marbolo Sizoo ST	
FIDE SIZES	Nedel Costland and T	
Return Period (year	s) 2	PIMP (%) 100
M5-60 (m	m) 17.700 Add Flo	ow / Climate Change (%) 10
Ratic Maximum Rainfall (mm/h	r) 100 Maxir	mum Backdrop Height (m) 0.200 mum Backdrop Height (m) 1.500
Maximum Time of Concentration (min	s) 30 Min Design Dep	th for Optimisation (m) 1.200
Foul Sewage (l/s/h Volumetric Runoff Coef	a) 0.000 Min Vel for f. 0.750 Min Slope	Auto Design only (m/s) 1.00 for Optimisation (1:X) 500
Desi	gned with Level Soffits	
Time Area	Diagram for Catchme	nt <u>1B</u>
	mo Area Timo Area	
(mi	ns) (ha) (mins) (ha)	
	0-4 0.751 4-8 0.738	
Total Ar	ea Contributing (ha) = 1.	489
Total	Pipe Volume $(m^3) = 62.19$	7
	-	
<u>Network Des</u>	sign Table for Catchr	nent 1B
PN Length Fall Slope I.Area (m) (m) (1:X) (ha) (T.E. Base k H mins) Flow (l/s) (mm) S	HYD DIA Section Type Auto ECT (mm) Design
1.000 39.859 0.570 69.9 0.107	4.00 0.0 0.600	o 225 Pipe/Conduit 🔒
2.000 25.421 0.870 29.2 0.081	4.00 0.0 0.600	o 225 Pipe/Conduit 🧁
1.001 60.431 0.680 88.9 0.143 1.002 48.714 1.055 46.2 0.129	0.00 0.00 0.0 0.600	o 300 Pipe/Conduit 🔒 o 300 Pipe/Conduit 🔒
Net	work Results Table	•
PN Rain T.C. US/IL Σ (mm/hr) (mins) (m)	I.Area Σ Base Foul A (ha) Flow (l/s) (l/s)	Add Flow Vel Cap Flow (l/s) (m/s) (l/s) (l/s)
1.000 55.16 4.42 97.900	0.107 0.0 0.0	1.6 1.57 62.3 17.6
2.000 56.26 4.17 98.200	0.081 0.0 0.0	1.2 2.43 96.6 13.6
1.001 52.70 5.03 97.255 1.002 51.40 5.38 96.575	0.331 0.0 0.0 0.460 0.0 0.0	4.71.67117.952.06.42.32164.070.4
©1	982-2018 Innovyze	
L		· · · · · · · · · · · · · · · · · · ·

DBFL Co	nsult	ing E	ngine	ers							Pa	ge 2
Ormond	House				17	0024						
Upper C	rmond	Quay			Ne	wcastle						
Dublin	7	- 1			Ca	tchment 1	В				N A	icco
Date 02	2/07/20	019			De	signed by	FNS					ILIU
File 17	., 0,, <u>2</u> . /0024-	Foul	and	Storm	Ch	ecked by	NCG					anage
The root and storm checked by Ned										<u> </u>		
Innovyze Network 2018.1												
Network Design Table for Catchment 1P												
			11001	NOIR DC	July		cate.					
PN	Length	Fall	Slope	I.Area	T.E.	Base	k	HYD D	AIC	Secti	on Type	Auto
	(m)	(m)	(1:X)	(ha)	(mins)	Flow (l/s)	(mm)	SECT (1	mm)			Design
1 003	1 677	0 150	31 0	0 004	0 00	0 0	0 600	0	300	Pino/	Conduit	•
1 003	76 921	2 370	32.5	0.004	0.00	0.0	0.000	0	300	Pipe/	Conduit	
1.005	32.535	0.050	650.7	0.000	0.00	0.0	0.600	0	750	Pipe/	Conduit	_
												•
3.000	45.699	0.725	63.0	0.107	4.00	0.0	0.600	0	225	Pipe/	Conduit	0
												-
4.000	29.671	0.370	80.2	0.059	4.00	0.0	0.600	0	225	Pipe/	Conduit	8
3 001	27 401	1 250	21 9	0 041	0 00	0 0	0 600	0	225	Pine/	Conduit	۵
5.001	27.101	1.200	21.9	0.041	0.00	0.0	0.000	0.	220	r the	CONGUIC	•
5.000	73.520	0.500	147.0	0.229	4.00	12.6	0.600	0	300	Pipe/	Conduit	a
												-
3.002	42.795	0.350	122.3	0.085	0.00	0.0	0.600	0	300	Pipe/	Conduit	
3.003	5./64	0.050	115.3	0.006	0.00	0.0	0.600	0	300	Pipe/	Conduit	
3.004	35.911	0.980	36.6	0.092	0.00	0.0	0.600	0	300	Pipe/	Conduit	
3.005	22.266	0.645	86.1	0.102	0.00	0.0	0.600	0	3/5	Pipe/	Conduit	
3.006	9.687	0.145	66.8	0.008	0.00	0.0	0.600	0	3/5	Pipe/	Conduit	
3.007	24.792	0.413	60.0	0.056	0.00	0.0	0.600	0	3/5	Pipe/	Conduit	#
3.008	13.231	0.150	88.2	0.000	0.00	0.0	0.600	0	375	Pipe/	Conduit	#
3.009	18.3/0	0.050	367.4	0.000	0.00	0.0	0.600	0	450	Pipe/	Conduit	•
1.006	13.603	0.068	200.0	0.000	0.00	0.0	0.600	0	450	Pipe/	Conduit	A
										1		
				Ne	etwork	Results	Table					
PI	N Ra:	in 7	r.c.	US/IL Σ	I.Area	Σ Base	Foul	Add Fl	ow	Vel	Cap	Flow
	(mm/	'hr) (n	nins)	(m)	(ha)	Flow (l/s)	(1/s)	(l/s))	(m/s)	(1/s)	(1/s)
1.0	03 51	.30	5.41	95.520	0.464	0.0	0.0	6	.4	2.83	199.7	70.9
1.0	04 49	.70	5.87	95.370	0.704	0.0	0.0	9	.5	2.77	195.8	L04.2
1.0	05 48	.12	6.37	91.650	0.704	0.0	0.0	9	.5	1.09	481.3	L04.2

			©1	L982-2018	Innovy	ze					
1.006	46.19	7.03	91.600	1.489	12.6	0.0	19.9	1.43	228.0	218.8	
3.009	46.63	6.87	91.650	0.785	12.6	0.0	11.4	1.05	167.7	125.7	
3.008	47.47	6.58	91.800	0.785	12.6	0.0	11.4	1.93	213.2	125.7	
3.007	47.81	6.47	92.855	0.785	12.6	0.0	11.4	2.34	258.7	125.7	
3.006	48.35	6.29	93.000	0.729	12.6	0.0	10.8	2.22	245.2	118.9	
3.005	48.58	6.22	93.645	0.721	12.6	0.0	10.7	1.95	215.7	118.2	
3.004	50.12	5.74	94.700	0.619	12.6	0.0	9.7	2.61	184.2	106.3	
3.003	50.91	5.51	94.750	0.527	12.6	0.0	8.5	1.46	103.4	93.8	
3.002	51.15	5.45	95.100	0.521	12.6	0.0	8.5	1.42	100.4	93.2	
5.000	53.02	4.95	95.600	0.229	12.6	0.0	4.5	1.29	91.5	50.0	
3.001	54.31	4.62	96.350	0.207	0.0	0.0	3.0	2.81	111.6	33.5	
4.000	55.53	4.34	96.720	0.059	0.0	0.0	0.9	1.46	58.1	9.8	
3.000	55.00	4.46	97.300	0.107	0.0	0.0	1.6	1.65	65.6	17.5	
1.005	48.12	6.37	91.650	0.704	0.0	0.0	9.5	1.09	481.3	104.2	
1 005	10.10	c 27	01 650	0.701	0.0	0.0	0.5	1 00	401 0	101.	2

DBFL Consulting Engineers	Page 1													
Ormond House	170024													
Upper Ormond Quay	Newcastle													
Dublin 7	Catchment 1C Mirro													
Date 02/07/2019	Designed by FNS													
File 170024- Foul and Storm	Checked by NCG													
Innovyze	Network 2018.1													
STORM SEWER DESIGN Design Cri Pipe Sizes STA FSR Rainfall Return Period (years) M5-60 (mm) Ratio R Maximum Rainfall (mm/hr) Maximum Time of Concentration (mins) Foul Sewage (1/s/ha) Volumetric Runoff Coeff.	by the Modified Rational Method teria for Catchment 1C ANDARD Manhole Sizes STANDARD Model - Scotland and Ireland 2 PIMP (%) 100 17.700 Add Flow / Climate Change (%) 10 0.271 Minimum Backdrop Height (m) 0.200 100 Maximum Backdrop Height (m) 2.000 30 Min Design Depth for Optimisation (m) 1.200 0.000 Min Vel for Auto Design only (m/s) 1.00 0.750 Min Slope for Optimisation (1:X) 500													
Design <u>Time Area D</u> Time (mins) 0-4 Total Area Total Pij	ed with Level Soffits iagram for Catchment 1C Area Time Area (mins) (ha) 4 0.555 4-8 0.680 Contributing (ha) = 1.235 pe Volume (m ³) = 44.820													
Network Desic	gn Table for Catchment 1C													
PN Length Fall Slope I.Area T.1 (m) (m) (1:X) (ha) (min	E. Base k HYD DIA Section Type Auto ns) Flow (l/s) (mm) SECT (mm) Design													
1.00035.6101.01735.00.10841.0014.4770.12835.00.00401.00248.6341.30437.30.18801.00333.4110.90337.00.10101.0044.6080.11540.10.00401.00534.7650.99834.80.0370	.00 0.0 0.600 o 225 Pipe/Conduit													
Netwo	ork Results Table													
PN Rain T.C. US/IL Σ I.A (mm/hr) (mins) (m) (ha	area Σ Base Foul Add Flow Vel Cap Flow a) Flow (l/s) (l/s) (l/s) (m/s) (l/s) (l/s)													
1.000 55.85 4.27 96.940 0. 1.001 55.70 4.30 95.923 0. 1.002 54.09 4.68 95.795 0.	108 0.0 0.0 1.6 2.22 88.2 18.0 112 0.0 0.0 1.7 2.22 88.2 18.6 300 0.0 0.0 4.4 2.15 85.4 48.3 401 0.0 0.0 5.8 2.16 85.8 63.4													
1.003 53.06 4.94 94.491 0. 1.004 52.91 4.97 93.588 0. 1.005 51.93 5.23 93.473 0.	405 0.0 0.0 5.8 2.07 82.4 63.8 442 0.0 0.0 6.2 2.22 88.4 68.4													
DBFL (Cons	ult	ing E	Ingin	eers							P	age 2	
----------------	---------	------	--------	--------------	-------------	--------	------------	------------	------------	------	-------	-----------	----------	-----
Ormono	d Ho	use				17	0024					Γ		
Upper	Orm	ond	Quay	7		Ne	ewcastle							
Dubli	n 7					Ca	atchment	1C					Vicco	~~~
Date (02/0	7/20	019			De	esigned b	y FNS						
File 1	1700	24-	Foul	and	Storm	Ch	necked by	NCG					JPUIIPIC	Je
Innov	vze					Ne	etwork 20	18.1						
	1													
				Net	work De	esign	Table fo:	r Catc	hment	1C				
PN	Le	ngth	Fall	Slop	e I.Area	T.E.	Base	k	HYD	DIA	Sect	ion Tyj	pe Auto	
	((m)	(m)	(1:X) (ha)	(mins)	Flow (1/s)) (mm)	SECT	(mm)			Design	1
2.00	0 39	.984	0.595	67.	2 0.101	4.00	0.0	0.600	0	225	Pipe,	/Condu	it 🔒	
1.00	6 77	.792	0.390) 199.	5 0.169	0.00	0.0	0.600	0	375	Pipe,	/Condu:	it 🔒	
											1			
3.00	0 32	.216	0.650	49.	6 0.094	4.00	0.0	0.600	0	225	Pipe,	/Condu	it 🤒	
1.00	7 44	.049	0.260) 169.	4 0.040	0.00	0.0	0.600	0	375	Pipe	/Condu	it. 🔺	
									-		,		•	
4.00	0 14	.272	0.300	47.	6 0.078	4.00	0.0	0.600	0	225	Pipe,	/Condu	it 🤒	
4.00	1 20	./15	0.195) 106.	2 0.000	0.00	0.0	0.600	0	225	Pipe,	/Condu:	it 💾	
5.00	0 65	.119	1.025	63.	5 0.134	4.00	0.0	0.600	0	225	Pipe,	/Condu	it 🔒	
													-	
4.00	02 15	.140	0.145	104.	4 0.008	0.00	0.0	0.600	0	300	Pipe,	/Condu:	it 🦰	
1.00	8 5	.132	0.114	45.	0 0.000	0.00	0.0	0.600	0	375	Pipe,	/Condu	it 🔒	
1.00	9 35	.632	0.966	5 36.	9 0.039	0.00	0.0	0.600	0	375	Pipe,	/Condu	it 🤴	
6.00	0 66	224	0 420) 157	7 0 1 3 0	4 00	0 (0	225	Pine	/Condu	i+ 🛕	
0.00	0 00	•	0.120	. 10/.	, 0.100	1.00	0.	0.000	0	220	r the	condu.		
1.01	.0 5	.632	0.075	5 75.	1 0.000	0.00	0.0	0.600	0	375	Pipe,	/Condu	it 🤒	
					27	1-	Dessiles	m - l- l -						
					<u>IN 6</u>	etwork	Results	Table						
	PN	Ra	in	T.C.	US/IL Σ	I.Area	Σ Base	Foul	Add F	'low	Vel	Сар	Flow	
		(mm/	'hr) (mins)	(m)	(ha)	Flow (1/s) (l/s)	(1/:	s)	(m/s)	(1/s)	(1/s)	
2	.000	55	.19	4.42	92.175	0.101	0.	0 0.0)	1.5	1.60	63.5	16.6	
1	.006	48	.48	6.25	91.430	0.712	0.	0 0.0)	9.3	1.28	141.3	102.8	
3	.000	55	.75	4.29	92.820	0.094	0.	0 0.0)	1.4	1.86	74.1	15.6	
1	.007	46	.91	6.78	91.040	0.846	0.	0 0.0) 1	0.7	1.39	153.4	118.2	
4	.000	56	.49	4.13	92,500	0.078	0.	0 0.0)	1.2	1.90	75.6	13.1	
4	.001	55	.28	4.40	91.270	0.078	0.	0 0.0)	1.2	1.27	50.4	13.1	
		_										a –		
5	.000	54	.17	4.66	92.100	0.134	0.	υ 0.0)	2.0	1.64	65.3	21.6	
4	.002	53	.50	4.82	91.000	0.220	0.	0 0.0)	3.2	1.54	108.7	35.1	
1	800.	46	.81	6.81 7 01	90.780	1.066	0.	0 0.0) <u>1</u>	3.5	2.71	299.0	148.7	
	.009	40	.20	/.UI	20.000	T.T03	0.	0.0	, 1	5.0	2.99	JJU.4	192.3	
6	.000	52	.57	5.06	90.470	0.130	0.	0 0.0)	1.9	1.04	41.3	20.4	
1	.010	46	.13	7.05	89.700	1 235	0	0 0 0) 1	5.4	2.09	231 2	169 7	
1 [±]	• • ± •	- 0	•	,.00	52.100	±•८JJ	υ.	- 0.0	· 1	T	2.09	- J + • L		

©1982-2018 Innovyze

DBFL Consulting Engineers		Page 3
Ormond House	170024	
Upper Ormond Quay	Newcastle	
Dublin 7	Catchment 1C	Mirro
Date 02/07/2019	Designed by FNS	
File 170024- Foul and Storm	Checked by NCG	Diamage
Innovyze	Network 2018.1	

Network Design Table for Catchment 1C

PN	Length	Fall	Slope	I.Area	T.E.	Ba	ase	k	HYD	DIA	Section Type	Auto
	(m)	(m)	(1:X)	(ha)	(mins)	Flow	(l/s)	(mm)	SECT	(mm)		Design
1.011	8.700	0.100	87.0	0.000	0.00		0.0	0.600	0	375	Pipe/Conduit	۵
1.012	16.726	0.100	167.3	0.000	0.00		0.0	0.600	0	525	Pipe/Conduit	ă
1.013	9.186	0.100	91.9	0.000	0.00		0.0	0.600	0	525	Pipe/Conduit	ă
1.014	12.440	0.100	124.4	0.000	0.00		0.0	0.600	0	525	Pipe/Conduit	ě

<u>Network Results Table</u>

PN	Rain	T.C.	US/IL	Σ I.Area	Σ Base	Foul	Add Flow	Vel	Cap	Flow
	(mm/hr)	(mins)	(m)	(ha)	Flow (l/s)	(l/s)	(l/s)	(m/s)	(l/s)	(l/s)
1.011	45.93	7.13	88.500	1.235	0.0	0.0	15.4	1.94	214.7	169.7
1.012	45.50	7.29	88.400	1.235	0.0	0.0	15.4	1.73	374.3	169.7
1.013	45.32	7.35	88.300	1.235	0.0	0.0	15.4	2.34	506.1	169.7
1.014	45.05	7.46	88.200	1.235	0.0	0.0	15.4	2.01	434.5	169.7

©1982-2018 Innovyze

Appendix G

SURFACE WATER SIMULATION CALCULATIONS

DBFL Consulti	ng En	gineers						Page 1
Ormond House			1	70024				
Upper Ormond	Quay		Ne	ewcastl	e			
Dublin 7	~ 1		Ca	atchmen	t 1A S	imulatio	on	Micco
Date 02/07/20	119			asianed	by FN	с		
$F_{10} = 170024 -$	Foul	and Sta	rm Cl	ooglood 1	by NCC	0		Drainage
FILE 170024-	FOUL	anu sto		lecked	OY NCG			
Innovyze			Ne	etwork .	2018.1			
Summary	of Re	<u>sults f</u>	or 960 m	<u>inute 1</u>	<u>00 yea</u>	r Winte:	r (Ca	tchment 1A)
Mai	rgin for	r Flood F	tisk Warnin	g (mm)				300.0
		A	nalysis Tir	mestep 2.	5 Secon	d Increme	nt (Ex	tended)
			DIS	Status				ON
			Inertia	Status				ON
							_ .	
	IIS/MH	Water Level	Depth	Volume	Flow /	Overflow	Flow	
PN	Name	(m)	(m)	(m ³)	Cap.	(1/s)	(1/s)	Status
	-				-		_	
7.000	S36	102.624	-0.176	0.000	0.11		5.8	OK
7.001	535	99 912	-0.177	0.000	0.10		8.0 9.3	OK
8.000	s33-3	102.472	-0.173	0.000	0.12		9.5	OK
9.000	S33-2A	101.000	-0.195	0.000	0.04		2.4	OK
8.001	s33-2	100.563	-0.237	0.000	0.10		14.3	OK
8.002	S33-1	99.829	-0.232	0.000	0.12		17.6	OK
7.003	S33	98.682	-0.278	0.000	0.15		28.3	OK
7.004	S32	98.297	-0.278	0.000	0.15		30.3	OK
7.005	S31	98.009	-0.026	0.000	0.23		30.6	OK
10.000	S30-2 S30-1	100.008 98 892	-0.207	0.000	0.02		1.6	OK
7.006	S30 I	98.001	0.086	0.000	0.24		32.6	SURCHARGED
7.007	S29	97.999	0.204	0.000	0.19		33.4	SURCHARGED
7.008	S28	97.996	0.403	0.000	0.18		37.6	SURCHARGED
7.009	S27	97.992	0.732	0.000	0.25		37.6	SURCHARGED
11.000	S26-3	102.693	-0.182	0.000	0.08		5.9	OK
11.001	S26-2	101.152	-0.173	0.000	0.12		10.3	OK
12.000	S26-1A	99.697	-0.178	0.000	0.10		6.3	OK
7 010	526-1 026	98.693 97 001	-0.207	0.000	0.21		16./ 5/ 0	UK
7.010	520 925	97 982	0.//1	0.000	0.20		J4.∠ 55 ∩	SURCHARGED
13.000	s24-5	101.291	-0.184	0.000	0.08		6.6	OK
14.000	S24-4A	100.244	-0.181	0.000	0.09		5.6	OK
13.001	S24-4	99.601	-0.224	0.000	0.15		16.9	OK
13.002	S24-3	98.725	-0.225	0.000	0.14		18.2	OK
15.000	S24-2A	98.511	-0.184	0.000	0.08		3.7	OK
13.003	S24-2	97.990	-0.142	0.000	0.36		21.9	OK
13.004	S24-1	97.989	-0.109	0.000	0.18		22.4	OK
7.012	SZ4 S23	97 983	0.959	0.000	0.31		11.2 12 0	SURCHARGED
7.014	S23	97.971	1.646	0.000	0.04		12.0	SURCHARGED
								-

©1982-2018 Innovyze

DDIE CONSULCI	lng Eng	gineer	S					Page 1
Ormond House			1	L70024				
Upper Ormond	Quay		1	Newcast]	le			
Dublin 7				Catchmer	Micco			
Date 02/07/20)19		I	Designed	d by Fi	NS		
File 170024-	Foul a	and St	orm (Checked	by NC(6		Drainad
				Jotwork	2018	S 1		
тшоууге			1	NECWOIK	2010.	L		
Summa ru	of Ros	ulte f	For 1110	minuto	100 170	ar Wint	or (C	atchment 1B)
<u>Summar y</u>	OI KES	UILS I	1440	IIIIIIuce	<u>100 Ve</u>	ar wrnt	<u>er (c</u>	acchillenc ib)
Мат	rain for	Flood	Risk Warni	na (mm)				300.0
1101	19111 101	11000	Analysis T	imestep 2	.5 Seco	nd Increme	ent (E:	xtended)
			DTS	Status				OFF
			DVD	Status				ON
			Inertia	Status				ON
		Water	Surcharged	Flooded			Pipe	
	US/MH	Level	Depth	Volume	Flow /	Overflow	Flow	
PN	Name	(m)	(m)	(m ³)	Cap.	(1/s)	(1/s)	Status
1.000	S12-6	97,931	-0.194	0.000	0.05		2.7	OK
1.000	S12-6 S12-5A	97.931 98.223	-0.194 -0.202	0.000	0.05		2.7 2.0	OK OK
1.000 2.000 1.001	S12-6 S12-5A S12-5	97.931 98.223 97.308	-0.194 -0.202 -0.247	0.000 0.000 0.000	0.05 0.02 0.07		2.7 2.0 8.3	OK OK
1.000 2.000 1.001 1.002	S12-6 S12-5A S12-5 S12-4	97.931 98.223 97.308 96.629	-0.194 -0.202 -0.247 -0.246	0.000 0.000 0.000 0.000	0.05 0.02 0.07 0.07		2.7 2.0 8.3 11.5	OK OK OK
1.000 2.000 1.001 1.002 1.003	S12-6 S12-5A S12-5 S12-4 S12-3	97.931 98.223 97.308 96.629 95.589	-0.194 -0.202 -0.247 -0.246 -0.231	0.000 0.000 0.000 0.000 0.000	0.05 0.02 0.07 0.07 0.12		2.7 2.0 8.3 11.5 11.6	OK OK OK OK
1.000 2.000 1.001 1.002 1.003 1.004	S12-6 S12-5A S12-5 S12-4 S12-3 S12-2	97.931 98.223 97.308 96.629 95.589 95.431	-0.194 -0.202 -0.247 -0.246 -0.231 -0.239	0.000 0.000 0.000 0.000 0.000 0.000	0.05 0.02 0.07 0.07 0.12 0.09		2.7 2.0 8.3 11.5 11.6 17.6	OK OK OK OK OK
1.000 2.000 1.001 1.002 1.003 1.004 1.005	S12-6 S12-5A S12-5 S12-4 S12-3 S12-2 S12-1	97.931 98.223 97.308 96.629 95.589 95.431 93.889	-0.194 -0.202 -0.247 -0.246 -0.231 -0.239 1.489	0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.05 0.02 0.07 0.07 0.12 0.09 0.03		2.7 2.0 8.3 11.5 11.6 17.6 12.6	OK OK OK OK OK SURCHARGED
1.000 2.000 1.001 1.002 1.003 1.004 1.005 3.000	S12-6 S12-5A S12-5 S12-4 S12-3 S12-2 S12-1 S20-2	97.931 98.223 97.308 96.629 95.589 95.431 93.889 97.330	-0.194 -0.202 -0.247 -0.246 -0.231 -0.239 1.489 -0.195	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.05 0.02 0.07 0.07 0.12 0.09 0.03 0.04		2.7 2.0 8.3 11.5 11.6 17.6 12.6 2.7	OK OK OK OK SURCHARGED OK
1.000 2.000 1.001 1.002 1.003 1.004 1.005 3.000 4.000	S12-6 S12-5A S12-5 S12-4 S12-3 S12-2 S12-1 S20-2 S20-1A	97.931 98.223 97.308 96.629 95.589 95.431 93.889 97.330 96.745	-0.194 -0.202 -0.247 -0.246 -0.231 -0.239 1.489 -0.195 -0.200	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.05 0.02 0.07 0.07 0.12 0.09 0.03 0.04 0.03		2.7 2.0 8.3 11.5 11.6 17.6 12.6 2.7 1.5	OK OK OK OK SURCHARGED OK OK
1.000 2.000 1.001 1.002 1.003 1.004 1.005 3.000 4.000 3.001	S12-6 S12-5A S12-5 S12-4 S12-3 S12-2 S12-1 S20-2 S20-1A S20-1A	97.931 98.223 97.308 96.629 95.589 95.431 93.889 97.330 96.745 96.382	-0.194 -0.202 -0.247 -0.246 -0.231 -0.239 1.489 -0.195 -0.200 -0.193	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.05 0.02 0.07 0.12 0.09 0.03 0.04 0.03 0.05		2.7 2.0 8.3 11.5 11.6 17.6 12.6 2.7 1.5 5.2	OK OK OK OK SURCHARGED OK OK
1.000 2.000 1.001 1.002 1.003 1.004 1.005 3.000 4.000 3.001 5.000	S12-6 S12-5A S12-5 S12-4 S12-3 S12-2 S12-1 S20-2 S20-1A S20-1 S21	97.931 98.223 97.308 96.629 95.589 95.431 93.889 97.330 96.745 96.382 95.695	-0.194 -0.202 -0.247 -0.246 -0.231 -0.239 1.489 -0.195 -0.200 -0.193 -0.205	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.05 0.02 0.07 0.12 0.09 0.03 0.04 0.03 0.05 0.22		2.7 2.0 8.3 11.5 11.6 17.6 12.6 2.7 1.5 5.2 19.2	OK OK OK OK SURCHARGED OK OK OK
1.000 2.000 1.001 1.002 1.003 1.004 1.005 3.000 4.000 3.001 5.000 3.002	S12-6 S12-5A S12-5 S12-4 S12-3 S12-2 S12-1 S20-2 S20-1A S20-1 S21 S20	97.931 98.223 97.308 96.629 95.589 95.431 93.889 97.330 96.745 96.382 95.695 95.208	-0.194 -0.202 -0.247 -0.246 -0.231 -0.239 1.489 -0.195 -0.200 -0.193 -0.205 -0.192	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.05 0.02 0.07 0.12 0.09 0.03 0.04 0.03 0.05 0.22 0.28		2.7 2.0 8.3 11.5 11.6 17.6 12.6 2.7 1.5 5.2 19.2 26.5	OK OK OK OK SURCHARGED OK OK OK OK
1.000 2.000 1.001 1.002 1.003 1.004 1.005 3.000 4.000 3.001 5.000 3.002 3.002	\$12-6 \$12-5A \$12-5 \$12-4 \$12-3 \$12-2 \$12-1 \$20-2 \$20-1A \$20-1 \$21 \$20 \$20 \$20 \$21 \$20	97.931 98.223 97.308 96.629 95.589 95.431 93.889 97.330 96.745 96.382 95.695 95.208 94.888	-0.194 -0.202 -0.247 -0.246 -0.231 -0.239 1.489 -0.195 -0.200 -0.193 -0.205 -0.192 -0.192 -0.162	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.05 0.02 0.07 0.12 0.09 0.03 0.04 0.03 0.05 0.22 0.28 0.43		2.7 2.0 8.3 11.5 11.6 17.6 12.6 2.7 1.5 5.2 19.2 26.5 26.7	OK OK OK OK SURCHARGED OK OK OK OK OK
1.000 2.000 1.001 1.002 1.003 1.004 1.005 3.000 4.000 3.001 5.000 3.002 3.003 3.004	\$12-6 \$12-5A \$12-5 \$12-4 \$12-3 \$12-2 \$12-1 \$20-2 \$20-1A \$20-1 \$21 \$20 \$20 \$20 \$20 \$21 \$20 \$21 \$20 \$21 \$21 \$21 \$21 \$21 \$21 \$21 \$21 \$21 \$21	97.931 98.223 97.308 96.629 95.589 95.431 93.889 97.330 96.745 96.382 95.695 95.208 94.888 94.888	-0.194 -0.202 -0.247 -0.246 -0.231 -0.239 1.489 -0.195 -0.200 -0.193 -0.205 -0.192 -0.162 -0.162	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.05 0.02 0.07 0.12 0.09 0.03 0.04 0.03 0.05 0.22 0.28 0.43 0.17		2.7 2.0 8.3 11.5 11.6 17.6 12.6 2.7 1.5 5.2 19.2 26.5 26.7 29.0	OK OK OK OK SURCHARGED OK OK OK OK OK OK OK
1.000 2.000 1.001 1.002 1.003 1.004 1.005 3.000 4.000 3.001 5.000 3.002 3.003 3.004 3.004 3.005	\$12-6 \$12-5A \$12-5 \$12-4 \$12-3 \$12-2 \$12-1 \$20-2 \$20-1A \$20-1 \$21 \$20 \$19 \$18 \$17 \$12	97.931 98.223 97.308 96.629 95.589 95.431 93.889 97.330 96.745 96.382 95.695 95.208 94.888 94.783 93.944	-0.194 -0.202 -0.247 -0.246 -0.231 -0.239 -0.195 -0.200 -0.193 -0.205 -0.192 -0.162 -0.162 -0.217 -0.076	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.05 0.02 0.07 0.12 0.09 0.03 0.04 0.03 0.05 0.22 0.28 0.43 0.17 0.16		2.7 2.0 8.3 11.5 11.6 17.6 12.6 2.7 1.5 5.2 19.2 26.5 26.7 29.0 31.5	OK OK OK OK OK SURCHARGED OK OK OK OK OK OK OK
1.000 2.000 1.001 1.002 1.003 1.004 1.005 3.000 4.000 3.001 5.000 3.002 3.003 3.004 3.005 3.005	\$12-6 \$12-5A \$12-5 \$12-4 \$12-3 \$12-2 \$12-1 \$20-2 \$20-1A \$20-1 \$20-1 \$21 \$20 \$19 \$18 \$17 \$16 \$15	97.931 98.223 97.308 96.629 95.589 95.431 93.889 97.330 96.745 96.382 95.695 95.208 94.888 94.783 93.944 93.945	-0.194 -0.202 -0.247 -0.246 -0.231 -0.239 1.489 -0.195 -0.200 -0.193 -0.205 -0.192 -0.162 -0.162 -0.217 -0.076 0.570	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.05 0.02 0.07 0.12 0.09 0.03 0.04 0.03 0.05 0.22 0.28 0.43 0.17 0.16 0.21		2.7 2.0 8.3 11.5 11.6 17.6 12.6 2.7 1.5 5.2 19.2 26.5 26.7 29.0 31.5 31.7	OK OK OK OK OK SURCHARGED OK OK OK OK OK SURCHARGED
1.000 2.000 1.001 1.002 1.003 1.004 1.005 3.000 4.000 3.001 5.000 3.002 3.003 3.003 3.004 3.005 3.006 3.007 2.000	\$12-6 \$12-5A \$12-5 \$12-4 \$12-3 \$12-2 \$12-1 \$20-2 \$20-1A \$20-1 \$20-1 \$21 \$20 \$19 \$18 \$17 \$16 \$15 \$12	97.931 98.223 97.308 96.629 95.589 95.431 93.889 97.330 96.745 96.382 95.695 95.208 94.888 94.783 93.944 93.945 93.938	-0.194 -0.202 -0.247 -0.246 -0.231 -0.239 1.489 -0.195 -0.200 -0.193 -0.205 -0.192 -0.162 -0.192 -0.162 -0.217 -0.076 0.570 0.708	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.05 0.02 0.07 0.12 0.09 0.03 0.04 0.03 0.05 0.22 0.28 0.43 0.17 0.16 0.21 0.15		2.7 2.0 8.3 11.5 11.6 17.6 12.6 2.7 1.5 5.2 19.2 26.5 26.7 29.0 31.5 31.7 33.1	OK OK OK OK OK SURCHARGED OK OK OK OK OK SURCHARGED SURCHARGED
1.000 2.000 1.001 1.002 1.003 1.004 1.005 3.000 4.000 3.001 5.000 3.002 3.003 3.004 3.005 3.004 3.005 3.006 3.007 3.008 2.000	\$12-6 \$12-5A \$12-5 \$12-4 \$12-3 \$12-2 \$12-1 \$20-2 \$20-1A \$20-1 \$21 \$20 \$19 \$18 \$17 \$16 \$15 \$14 \$12	97.931 98.223 97.308 96.629 95.589 95.431 93.889 97.330 96.745 96.382 95.695 95.208 94.888 94.783 93.944 93.945 93.936 93.936	-0.194 -0.202 -0.247 -0.246 -0.231 -0.239 -0.195 -0.200 -0.193 -0.205 -0.192 -0.162 -0.162 -0.217 -0.076 0.570 0.708 1.761		0.05 0.02 0.07 0.12 0.09 0.03 0.04 0.03 0.05 0.22 0.28 0.43 0.17 0.16 0.21 0.15 0.22		2.7 2.0 8.3 11.5 11.6 17.6 2.7 1.5 5.2 19.2 26.5 26.7 29.0 31.5 31.7 33.1 32.9	OK OK OK OK OK SURCHARGED OK OK OK OK OK SURCHARGED SURCHARGED FLOOD RISK
1.000 2.000 1.001 1.002 1.003 1.004 1.005 3.000 4.000 3.001 5.000 3.002 3.003 3.004 3.005 3.004 3.005 3.006 3.007 3.008 3.009	\$12-6 \$12-5A \$12-5 \$12-4 \$12-3 \$12-2 \$12-1 \$20-2 \$20-1A \$20-1 \$21 \$20 \$19 \$18 \$17 \$16 \$15 \$14 \$13 \$12	97.931 98.223 97.308 96.629 95.589 95.431 93.889 97.330 96.745 96.382 95.695 95.208 94.888 94.783 93.944 93.938 93.934 93.934	-0.194 -0.202 -0.247 -0.246 -0.231 -0.239 -0.195 -0.200 -0.193 -0.205 -0.192 -0.162 -0.162 -0.217 -0.076 0.570 0.708 1.761 1.834		0.05 0.02 0.07 0.12 0.09 0.03 0.04 0.03 0.05 0.22 0.28 0.43 0.17 0.16 0.21 0.15 0.22 0.25 0.25		2.7 2.0 8.3 11.5 11.6 17.6 2.7 1.5 5.2 19.2 26.5 26.7 29.0 31.5 31.7 33.1 32.9 32.8	OK OK OK OK OK SURCHARGED OK OK OK OK OK OK SURCHARGED SURCHARGED SURCHARGED

BFL Consulti	ng En	gineer	ſS					Page 1
rmond House			1	L70024				
Ipper Ormond	Quay		1	Newcast				
ublin 7			0	Catchme	nt 1C	Simulat	ion	Micco
ate 02/07/20	19		I	Designe	d by F	'NS		
ile 170024-	Foul	and St	corm (Checked	by NC	G		Didilid
nnovyze			1	Vetwork	2018.	1		
Summary (of Rea	sults	for 1440	minute	100 y	ear Wint	er (0	<u>Catchment 1C)</u>
Mar	rain fo	r Flood	Risk Warni	ng (mm)				300.0
1101			Analysis T	imestep :	2.5 Seco	ond Increm	ent (E	Extended)
			DTS	Status				OFF
			DVD	Status				ON
			Inertia	Status				ON
		Water	Surcharged	Flooded			Pipe	
	US/MH	Level	Depth	Volume	Flow /	Overflow	Flow	
PN	Name	(m)	- (m)	(m³)	Cap.	(l/s)	(l/s)	Status
1.000	S9-8	96.966	-0.199	0.000	0.03		2.7	OK
1.001	S9-7	95.957	-0.191	0.000	0.06		2.8	OK
1.002	S9-6	95.841	-0.179	0.000	0.09		7.5	OK
1.003	S9-5	94.543	-0.173	0.000	0.12		10.0	OK
1.004	S9-4	93.658	-0.155	0.000	0.21		10.1	OK
1.005	S9-3	93.527	-0.171	0.000	0.13		11.0	OK
2.000	S9-2A	92.204	-0.196	0.000	0.04		2.5	OK
1.006	S9-2	91.520	-0.285	0.000	0.13		17.8	OK
3.000	S9-1A	92.847	-0.198	0.000	0.03		2.3	OK
1.007	S9-1	91.136	-0.279	0.000	0.15		21.1	OK
4.000	S11A	92.525	-0.200	0.000	0.03		1.9	OK
4.001	S11	91.374	-0.121	0.000	0.44		20.2	OK
5.000	S10-1	92.133	-0.192	0.000	0.05		3.3	OK
4.002	S10	91.102	-0.198	0.000	0.25		23.2	OK
1.008	S9	90.976	-0.179	0.000	0.33		44.2	OK
1.009	S8	90.969	-0.072	0.000	0.15		45.2	OK
	S7-1	90.944	0.249	0.000	0.08		3.2	SURCHARGED
6.000				0 000	0.37		48.4	SURCHARGED
6.000 1.010	s7	90.941	0.666	0.000				
6.000 1.010 1.011	S7 S6	90.941 90.866	0.666 1.991	0.000	0.39		48.3	SURCHARGED
6.000 1.010 1.011 1.012	S7 S6 N/A	90.941 90.866 90.792	0.666 1.991 1.867	0.000 0.000 0.000	0.39 0.10		48.3 24.2	SURCHARGED SURCHARGED
6.000 1.010 1.011 1.012 1.013	S7 S6 N/A S5	90.941 90.866 90.792 90.771	0.666 1.991 1.867 1.946	0.000 0.000 0.000	0.39 0.10 0.10		48.3 24.2 24.2	SURCHARGED SURCHARGED FLOOD RISK

Appendix H

JBA STORMWATER DRAINAGE AUDIT REPORT

JBA Project Code2019s0636ContractResidential Development at Newcastle South, Co DublinClientCairn Homes PLCDay, Date and Time26th June 2019AuthorLeanne LeonardSubjectStormwater Review / Audit Report

1 Proposed Residential Development, Newcastle South, Co. Dublin

1.1 Introduction

JBA Consulting have been contracted by Cairn Homes PLC c/o DBFL Consulting Engineers (DBFL) to undertake a review of the surface water drainage design for the proposed residential development at Newcastle, Co. Dublin. The surface water audit was undertaken in advance of a planning submission.

The objective of this stormwater review is to provide an independent 3rd party assessment of the proposed stormwater drainage for the subject development. The results of the audit are set out in the table below.

1.2 Stage 1 Audit

Design Parameter	Audit Result						
Proposed Development	The subject application comprises c.404 residential units and a crèche facility. The application also includes infrastructure comprising a road layout, cyclist infrastructure, foul, surface water and water supply services in accordance with the Newcastle Local Area Plan 2012 and South Dublin County Development Plan (2016-2022).						
	The subject site, of 15.82 hectares (39 acres), is located to the south of the R120/Main Street at Newcastle Village. The site is bounded by residential developments of different densities to the east and north and bounded by greenfield and single dwellings to the south and west. The St Finian's National School and Church is located to the north of the site.						
	The development lands form part of the South Dublin County Development Plan (2016-2022) and is zoned R1 "New/Proposed Residential". The western area of the site is predominantly green-field while some earthworks and site development works have been undertaken on the eastern area associated with the previously approved development. Existing boundaries within the site are predominantly hedgerows and fencing with some drainage ditches						
Relevant Studies/Documents	 The following documents were considered as part of this surface water audit: Greater Dublin Strategic Drainage Strategy (GDSDS) Greater Dublin Regional Code of Practice for Drainage Works BRE Digest 365 						
Site Characteristics	Soil: The SOIL type adopted by DBFL for the subject site is S2, although based on infiltration tests carried out in accordance with BRE365 by Ground Investigations Ireland, a SOIL type S3 is considered more appropriate which would allow a greater discharge rate from the overall site. Such an approach is therefore considered conservative resulting in additional storage that would otherwise be the case.						
	Rainfall (basis for surface water pipeline network design): Rainfall parameters can be estimated using Met Eireann data, using the Flood Studies Report (FSR) values or the values in the GDSDS. The Met Eireann method can be more representative of a site if selected correctly. A comparison of values estimated by DBFL and JBA is shown below:						
	DBFL valueJBA ValueRainfall model:FSRMet EireannM5-60 (mm):17.717.6Ratio R:0.2710.271						
	The above variations are deemed within acceptable limits.						

JBA

JBA

JBA

JBA Project Code Contract Client Day, Date and Time Author Subject 2019s0636 Residential Development at Newcastle South, Co Dublin Cairn Homes PLC 26th June 2019 Leanne Leonard Stormwater Review / Audit Report

	Greenfield Runoff Rate (basis of surface water attenuation design): The Greenfield Runoff Rate has been estimated by DBFL for the subject site using guidance from the GDSDS, which states that surface water runoff from the overall development site would be limited to the equivalent of QBar or 2l/s/ha (whichever is greater). Greenfield Runoff Rate has been estimated using the Institute of Hydrology Report 124 (IH124) method for flood estimation on small catchments.
	DBFL valueJBA valueQbar:26.14 l/sec26.10 l/sec
	JBA calculate the Qbar value to be similar to that calculated by DBFL on the basis of the Soil Type 2. If a soil type 3 was adopted given the results of the site investigation, the allowable discharge could be increased to 48.7 l/s. On the basis that the allowable discharge rate is lower and deemed more conservative, JBA have no issue with the proposed discharge rate.
	Windes Calculations The Windes models as submitted for catchments 1A, 1B and 1C account for an impermeable area of 5.085ha, which when compared to the gross area of the subject sites (10.87ha) equates to an impermeability factor of 47% which is appropriate for a medium density residential development.
	The design of the storm network is indicated as 2 years return period with the cap on maximum rainfall intensity set at 100mm/hr (typically set at 50mm/hr) which is deemed acceptable. It is noted that the capacity of all pipes are substantially in excess of the calculated flows.
	SuDS Management Train The SuDS as proposed, including the proposed discharge rate, are understood to have been discussed and agreed with SDCC.
Surface Water Drainage Design	All surface water flows generated by the proposed development will be attenuated and discharged at the controlled rate of 26.14 l/sec as per the GDSDS requirements and as highlighted within this storm water audit.
	No storm pipes less than 225mm diameter are proposed for sections of the site that may be taken in charge as per SDCC requirements.
Climate Change	An allowance of 10% increase in flows has been included for climate change, both for the storm sewer calculations provided and for the rainfall intensities for the purposes of sizing the attenuation tank. This is in compliance with Section 6.3.2.4 of the GDSDS.
Discharge Rate / Flow Control	From the IH124 method, the QBar discharge rate, using the FSR growth curves, from the development site is 26.14 l/s.
	This is in accordance with the requirements of the GDSDS.
	It is proposed by DBFL and as discussed with SDCC that surface water run-off from the site will be attenuated to QBar (26.14/sec) using a Hydrobrake flow control device, while providing surface water attenuation for the full 1 in 100 year event (plus climate change) within the proposed stormwater design / attenuation system(s).
	Following geotechnical site investigations it is likely that some run-off is likely from landscaped areas and the design has allowed for a 15% runoff factor for such areas which is deemed acceptable. It should be noted that not all rear gardens of houses can drain positively to the stormwater system given their orientation and cut-off (mid-terrace etc) and therefore do not contribute to

www.jbaconsulting.com www.jbarisk.com www.jbaenergy.com JBA consultir JBA

JBA

isk nanagerr

JBA Project Code2019s0636ContractResidential Development at Newcastle South, Co DublinClientCairn Homes PLCDay, Date and Time26th June 2019AuthorLeanne LeonardSubjectStormwater Review / Audit Report

	attenuation volumes. Where such cut-off is provided, the subject gardens will rely on local infiltration.
	Clear passages less than 75mm can be particularly susceptible to blockage, however, given the proposed discharge rates, ope sizes are likely to be greater than 75mm where the risk is much reduced. This coupled with a detailed maintenance plan will reduce such risk further.
Volume Storage	DBFL have provided calculations for the proposed attenuation volumes. DBFL are proposing an overall attenuation volume of c.3,064m ³ (which has been sized for the 100 year return period + climate change). JBA have checked for attenuation volumes using Windes and attain similar volumes.
	The design of the storm sewer network and subsequent storage has been undertaken by the use of rainfall information based on the flood studies report (FSR) and detailed network and ground level information as per the requirements of the GDSDS.
Volume Run-off	Greenfield run-off is currently conveyed to the northern boundary of the site following the natural topography of the site. Whereas, the volume may ultimately be increased due to the increased paved area, the proposed attenuation measures and associated discharge rate from the site is limited to QBar for all storm events as per the requirements of the GDSDS. We note that the discharge rate is based on a soil type 2 which results in a lower Qbar value for the site as already noted.
Return Period	A 100 year return period plus 10% for climate change has been used in the design for the attenuation systems.
Health & Safety and Maintenance Issues	The proposed drainage system comprises traditional road gullies, manholes, a petrol interceptor, swales together with multiple attenuation features. These elements are considered acceptable from a Health & Safety perspective once supplier/manufacturers guides are followed and complied with during the detailed design, construction and operation.
	Optimum performance of the drainage system is subject to the frequency of maintenance provided and should be submitted for SDCC prior to commencement on site.
	Regular maintenance of the hydrobrake will be required to remove any blockages, particularly in the wake of heavy rainfall events or local floods.
	It is recommended that the petrol interceptor be fitted with an audible high level silt and oil alarm for maintenance and safety purposes. Regular inspection and maintenance is recommended for the petrol interceptor. Please note that silt and debris removed from the petrol interceptor during maintenance will be classified as contaminated material and should only be handled and transported by a suitably licensed contractor and haulier and disposed of at a suitably licensed landfill only.
Detailed Design Stage	Particular consideration is required at detailed design to the design, maintenance requirements and whole life plan (and replacement) of the swales / interceptor storage.
	At detailed design stage, the number, type and location of road gullies should be reviewed such that exceedance flows are conveyed to the storm sewers and associated attenuation facilities, thereby, preventing off-site conveyance (cross- boundary flows) during exceedance rainfall conditions.

JBA consultir JBA

JBA

Page 3 of 5

JBA Project Code Contract Client Day, Date and Time Author Subject 2019s0636 Residential Development at Newcastle South, Co Dublin Cairn Homes PLC 26th June 2019 Leanne Leonard **Stormwater Review / Audit Report**

Design Review Process	Upon review of DBFL's initial drainage design, the following changes have been incorporated to the final design, namely:
	 Runoff co-efficient's from permeable paving, houses, roads and footpaths have been increased;
	 A runoff co-efficient of 15% has been applied to relevant grassed surfaces;
	Overall attenuation volume requirements have increased.
	A summary of comments and record of the audit trail are appended to this report.
	Based on this being at preliminary design stage and a Stage 1 stormwater review, JBA Consulting's comments have all been satisfactorily addressed or sufficient commitment provided that details will be confirmed at detailed design stage.
Audit Result	JBA Consulting considers that the surface water drainage design for the proposed development is acceptable and meets the requirements of the stormwater requirements in the GDSDS.
Audit Report Prepared by:	Leanne Leonard BEng Engineer
Approved by:	Declan White BEng CEng MIEI IMaPS Principal Engineer

Note:

JBA Consulting Engineers & Scientists Ltd. role on this project is as an independent reviewer/auditor. JBA Consulting Engineers & Scientists hold no design responsibility on this project. All issues raised and comments made by JBA are for the consideration of the Design Engineer (DBFL). Final design, construction supervision, with sign-off and/or commissioning of the surface water system so that the final product is fit for purpose with a suitable design, capacity and life-span, remains the responsibility of the Design Engineers.

www.jbaconsulting.com www.jbarisk.com

www.jbaenergy.com

JBA

JBA Project Code Contract Client Day, Date and Time Author Subject 2019s0636 Residential Development at Newcastle South, Co Dublin Cairn Homes PLC 26th June 2019 Leanne Leonard Stormwater Review / Audit Report

Appendix A – Audit Trail Record

Page 5 of 5

JBA Consulting Stormwater Review

 Project:
 Cairn Residential Development at Newcastle, Co Dublin

 Date:
 23/05/2019

JBA Reviewers Leanne Leonard - Engineer

ltem No.	JBA Review Comment	Comment/Clarification Request/Suggested Mitigation	Response from Client/Client Representative	Acceptable / Not
				Acceptable
	23/05/2019		12/06/2019	
1	Classification of Soils We note Table 3.2 of your engineering report where the drainage group is indicated to be 2, depth to impermeable layer is 40 - 80cm, the slope class $0 - 2^0$ and the permeability rate taken as medium which suggests the soil type should be 3. However, soil type 2 has been taken for Qbar calculations.	DBFL to review	Based on the site investigation data and Table 4.5 of the Flood Studies Report, it is acknowledged that the most appropriate soil type for the subject site is soil type 3 which would result in an allowable run-off of approximately 4l/s/ha. Notwithstanding this, soil type 2 has been utilised in the drainage design to provide a more robust design and a greater level of protection to downstream drainage infrastructure and watercourses. The use of soil type 2 results in an allowable outflow of 2.1l/s/ha.	Acceptable
2	Classification of Soils Notwithstanding item 1 above, we note section 5.5 of the site investigation report which indicates that the infiltration testing was not favourable and the test locations were not considered suitable for soakaways. As local information on ground conditions is available, the findings of same should be considered in lieu of any generic mapping, SuDS or otherwise.	DBFL to review findings of SI as regards the most appropriate soil type for the subject site which may accommodate a revised Qbar figure	Based on the site investigation data and Table 4.5 of the Flood Studies Report, it is acknowledged that the most appropriate soil type for the subject site is soil Type 3 which would result in an allowable run-off of approximately 4l/s/ha. Notwithstanding this, soil type 2 has been utilised in the drainage design to provide a more robust design and a greater level of protection to downstream drainage infrastructure and watercourses.	Acceptable
3	Runoff Co-Efficients We note Section 3.2.3 and 3.6 of DBFL Infrastructure Design Report. Given items 1 and 2 above, there is little by way of any meaningful infiltration throughout the site. In view of same, the loss of stormwater volume will be limited and it is considered that the runoff co-efficients of 0.5 and to a lesser extent 0.75 for runoff from permeable paving, houses and roads/footpaths are low.	DBFL to review	It is acknowledged that the results of the infiltration tests in accordance with Bre Digest 365 indicated negligible soakage rates based on the test procedure. Notwithstanding the test results, some infiltration will naturally occur at the base of the permeable paving driveways. Also the permeable paving will have a free draining material within the build-up and will reduce the flow rate from these areas. Rainfall will 'wet' the initial surface of the paving allowing water to be stored in the micro and macrotexture of the surfacing and will be lost to evapotranspiration, as the run-off drains through the free draining aggregate, this build up will also 'wet' giving another volume reduction due to evapotranspiration and natural storage within the SuDS feature. A reduction in velocity will also occur as the aggregate used will slow the run-off at source, changing the input hydrograph which will ultimately reduce the peak inflow for attenuation calculations. It is impractical to create a combined model of each permeable paving area in a drainage model therefore a run-off coefficient of 0.5 was utilised in the original design for the above reasons. Based on JBA's comments we have now increased the run-off coefficients for permeable paving and houses draining to permeable paving to 0.75 and 0.80 respectively, to provide a more robust conservative design.	Acceptable
4	Runoff from Grassed Areas It is noted that no runoff from grassed areas is accommodated, however, it is acknowledged that runoff from some back gardens is prevented by concrete block boundary walls to rear gardens	DBFL to provide reasoning as to why all grassed surfaces can be omitted from calculations	The majority of green areas are not positively drained. Rear gardens are generally set 100mm to 200mm below the finished floor levels of houses which will provide adequate storage of surface water in an extreme rainfall event. Notwithstanding this, DBFL have reviewed the site layout and the likelihood of run-off from green areas entering the drainage network. The following allowances have been made for each catchment based on that review: Catchment 1A: a run-off coefficient of 0.15 has been applied to 25% of the total grassed areas. Catchment 1B: a run-off coefficient of 0.15 has been applied to 20% of the total grassed areas. Catchment 1C: a run-off coefficient of 0.15 has been applied to 20% of the total grassed areas.	Acceptable
5	Road Drainage from Main Street to Storm MH S6 It is noted that the entrance road from the Main Street in as far as Storm MH S6 adjacent attenuation facility 1C is not connected to any formal storage facility.	DBFL to confirm if storage of same is accommodated & attenuated within the adjacent open filter drain with surface water swale	Due to the 2m level difference between Main Street and attenuation facility 1C, it is not possible to attenuate this section of road in attenuation facility 1C as it would result in excessively deep attenuation. The adjacent swale and filter drain will be utilised to attenuate this section of road although it is impractical to provide a hydrobrake on this small section of road.	Acceptable
6	Exceedance Rainfall Whereas the attenuation facilities are designed for the 1 in 100 year rainfall event + climate change, conveyance of exceedance flows is likely on the surface in lieu of within the stormwater network. Therefore, internal roads should be designed to convey flow towards same and not towards existing site boundaries. For example, the access road towards the north-west corner of catchment 1A and the south-west corner of catchment 1B will convey overland flows to the existing open drain on the western boundary which will result in increased runoff > Qbar for the site	DBFL to review and consider: 1. revised road levels to prevent cross boundary flows, thereby increasing runoff >Qbar and/or 2. provision of a filter drain along full length of western boundary which can connect to the stormwater system within catchment 1C	Please refer to microdrainage simulation results for each drainage network which shows that the 100 year storm event can be accommodated below the cover level of the manholes therefore there should be no overland flow for the 1 in 100 year rainfall event + climate change. It should be noted that the storm that will flood pipe networks is generally an intense storm that cannot get into the network quickly enough. In volumetric terms these storms or portion of storms are usually small therefore the impact on downstream drainage infrastructure and watercourses would be negligible.	Acceptable
7	Drainage of Catchments 4 and 5 It is not clear from the drainage strategy drawings how catchments 4 and 5 are to be drained together with associated attenuation proposals	DBFL to review and advise	Please refer to attached report text which will be included in the updated Infrastructure Design Report submitted with the planning application. The infill sites benefits from core infrastructure constructed under the previously permitted development (Reg. Ref. SD05A/0344). Surface water sewers have been constructed in the roads surrounding the infill sites and have been surveyed to confirm levels and diameters. DBFL have undertaken a check on the adequacy of the existing attenuation volumes to accommodate the proposed infill sites which is outlined in the attached report and appended calculations	Acceptable

Item No.	JBA Review Comment	Comment/Clarification Request/Suggested Mitigation	Response from Client/Client Representative	Acceptable / Not Acceptable
8	Drainage of Green Fields to south of subject development A cut-off drain to the southern boundary of the subject residential development is noted which will convey any overland flows to an existing open drain bounding the western boundary. On the basis that Qbar for the discharge of surface water from the residential development has been calculated on the area of the subject residential development, we consider this appropriate and no attenuation of the subject green areas south of the residential development is required	DBFL to confirm: 1. the calculation of Qbar for the residential development is based on the net area of the overall site related to the residential houses/development and 2. if the said green areas south of the subject residential development are to be developed in due course, attenuation of same to GDSDS requirements will be provided at that stage	Qbar for attenuation area 1A was calculated on the net area of the site (excluding proposed green open space to the south and the future school site). The future school site will be attenuated within it's own catchment in accordance with GDSDS when development progresses in that area. The drainage design allows for an attenuated outflow of 3.111/s from the school site. The proposed open space to the south is zoned as Open Space therefore it is not anticipated that future development will take place in that area. If any development does occur, it would be required to provide attenuation within it's own catchment in accordance with GDSDS. The calculation of Qbar will be adjusted to include for overland flow to the north of the cut-off drain (area within school site to north of cut-off drain) and a run-off coefficient of 0.15 will be included on this area in the drainage design.	Acceptable

Appendix I

DRAINAGE DITCHES CALCULATIONS

TITLE Site at Newcastle Ditch Culverts SUBJECT QBAR Calculation	n using IOH Repo	ort 124 for Site	es < 25 km²		Job Reference 170024 Calc. Sheet No. 1	ŒFL
DRAWING NUMBER -	c	alculations by FNS		Checked by NCG	Date Mar 2019	
Estimation of QB	AR from IOH Rep	ort 124 for ca	atchments le	ess than 25 kn	n ² using the 3 variable e	equation
<u>Site area is less t</u>	² Site Area = AREA = SAAR =	18.35 0.184 789 0.30	Ha]km ²]mm		Note to Institute of Hydrology F Q _{bar} The Mean Annu AREA Area of the Cat SAAR Standard Annu <i>NERC Flood S</i> SOIL Soil Index Valu <i>Winter Rain Ac</i> (Supplementar	Report No. 124 Eqn ual Flood (cumecs) chment (km ²) al Average Rainfall (mm) <i>tudies Report, 1975</i> es of Catchment <i>ceptance Potential,</i> <i>y Report No. 7</i>)
¹ Q _{bar (ru}	_{ıral)} = 0.00108 * (AF Q _{bar [rural]} =	REA) ^{0.89} (SAAR 0.038	^{1.17} (SOIL) ^{2.1}]m ³ /s	7	Soil Classification for Runoff Po Soil 1 0 Soil 2 100 Soil 3 0 Soil 4 0 Soil 5 0	tential FSR Maps % % % %
Permissible Outfle	ow from Site usir Flood Return Event 1 QBAR 10 30 50	• 1 Growth Fa ⁵Growth Factor 0.85 1 1.67 2.1 2.33	Permitted Flow (m³/s) 0.03 0.04 0.08 0.09	+ Climate Change 20% 0.04 0.05 0.08 0.10 0.11		
E	100 200 1000	2.6 2.85 3.5	0.10 0.11 0.13	0.12 0.13 0.16		
4 <u> 1 hectare = 10,000m² Notes</u>	actorial Error All	$\frac{\text{owance}}{\text{r}^2 =}$ $\frac{\text{n} =}{\text{fse} =}$ $\frac{\text{Q'}_{\text{bar}} =}{\text{Q'}_{100} =}$ $\frac{\text{Q'}_{100} =}{\text{re for the stance}}$ $\frac{\text{km}^2 - 100 \text{ hectares}}{\text{re for the stance}}$	0.847 71 1.651 0.08 0.20 dard factorial	m ³ /s m ³ /s error)	Design Flow with allowance f and Factorial Error	for Climate Change
Notes 1. Based on the Institute of Hyd 2. For catchments smaller than 3. Soil index value (SPR) calcul 4. Fse is the standard factoial e 5. QBAR multiplied by growth fa	Irology Report 124 for small c 50 hectares in area, flow rate lated from Flood Studies Rep error actors of 0.85 for 1 year, 2.1 f	atchments less than 25 as are linearly interpolat ort Vol V Fig I 4.18(1) - or 30 year, 2.3 for 50 a	km ² . ted for smaller areas. The Classification of and 2.6 for 100 year r	Soils from Winter Rainfa	all Acceptance Rate . n GDSDS Figure C2.	

Appendix J

FOUL SEWER CALCULATIONS

DBFL Consulting Engineers		Page 1
Ormond House	170024	
Upper Ormond Quay	Newcastle	
Dublin 7	Foul Network	Micro
Date 02/07/2019	Designed by FNS	
File 170024- Foul and Storm	Checked by NCG	Diamage
Innovyze	Network 2018.1	

FOUL SEWERAGE DESIGN

Design Criteria for Foul - Unit

Pipe Sizes STANDARD Manhole Sizes STANDARD

Industrial Flow (1/s/ha)0.00Add Flow / Climate Change (%)0Industrial Peak Flow Factor0.00Minimum Backdrop Height (m)0.200Calculation Method BS8301Maximum Backdrop Height (m)2.000Frequency Factor0.00Min Design Depth for Optimisation (m)1.200Domestic (1/s/ha)0.00Min Vel for Auto Design only (m/s)0.75Domestic Peak Flow Factor6.00Min Slope for Optimisation (1:X)500

Designed with Level Soffits

Network Design Table for Foul - Unit

PN	Length (m)	Fall (m)	Slope (1:X)	Area (ha)	Units	Ba Flow	ise (l/s)	k (mm)	HYD SECT	DIA (mm)	Section Type	Auto Design
1.000	58.410 70.939	0.840	69.5 38.3	0.000	112.0 42.0		0.0	1.500	0	225 225	Pipe/Conduit Pipe/Conduit	
1.002	20.509	0.310	66.2	0.000	0.0		0.0	1.500	0	225	Pipe/Conduit	ĕ
2.000	79.118	2.250	35.2	0.000	392.0		0.0	1.500	0	225	Pipe/Conduit	8
3.000	28.711	0.750	38.3	0.000	56.0		0.0	1.500	0	225	Pipe/Conduit	8
2.001	36.952	1.149	32.2	0.000	84.0		0.0	1.500	0	225	Pipe/Conduit	8
4.000	31.931	0.456	70.0	0.000	56.0		0.0	1.500	0	225	Pipe/Conduit	8
2.002	54.727	0.771	71.0	0.000	112.0		0.0	1.500	0	225	Pipe/Conduit	0

Network Results Table

US/IL (m)	Σ Area (ha)	Σ Base Flow (l/s)	Σ Units	Add Flow (l/s)	P.Dep (mm)	P.Vel (m/s)	Vel (m/s)	Cap (1/s)	Flow (1/s)	
102.440	0.000	0.0	112.0	0.0	41	0.80	1.38	54.8	4.0	
101.600	0.000	0.0	154.0	0.0	37	1.01	1.86	73.8	4.4	
99.750	0.000	0.0	154.0	0.0	42	0.83	1.41	56.2	4.4	
102.300	0.000	0.0	392.0	0.0	41	1.13	1.94	77.1	5.7	
100.800	0.000	0.0	56.0	0.0	33	0.94	1.86	73.9	3.5	
100.050	0.000	0.0	532.0	0.0	43	1.20	2.03	80.6	6.3	
99.300	0.000	0.0	56.0	0.0	39	0.77	1.37	54.6	3.5	
98.901	0.000	0.0	700.0	0.0	54	0.94	1.36	54.2	7.0	
		@10	02_2010	Tnnouu	7.0					
	US/IL (m) 102.440 101.600 99.750 102.300 100.800 100.050 99.300 98.901	US/IL E Area (ha) 102.440 0.000 101.600 0.000 99.750 0.000 102.300 0.000 100.800 0.000 100.050 0.000 99.300 0.000 98.901 0.000	US/II. (m) E Area (ha) E Base Flow Base (l/s) 102.440 0.000 0.0 101.600 0.000 0.0 99.750 0.000 0.0 102.300 0.000 0.0 100.800 0.000 0.0 100.050 0.000 0.0 99.300 0.000 0.0 98.901 0.000 0.0	US/II. (m) E Area (ha) E Base Flow (l/s) E Units 102.440 0.000 0.0 112.0 101.600 0.000 0.0 154.0 99.750 0.000 0.0 392.0 102.300 0.000 0.0 392.0 100.800 0.000 0.0 56.0 99.300 0.000 0.0 56.0 98.901 0.000 0.0 700.0	US/IL (m) E Area (ha) E Base Flow (l/s) E Units Add Flow (l/s) 102.440 0.000 0.0 112.0 0.0 101.600 0.000 0.0 154.0 0.0 99.750 0.000 0.0 154.0 0.0 102.300 0.000 0.0 392.0 0.0 100.800 0.000 0.0 56.0 0.0 100.050 0.000 0.0 56.0 0.0 99.300 0.000 0.0 56.0 0.0 98.901 0.000 0.0 700.0 0.0	US/IL (m) E Area (ha) E Base Flow (l/s) E Units (l/s) Add Flow (l/s) P.Dep (mm) 102.440 0.000 0.0 112.0 0.0 41 101.600 0.000 0.0 154.0 0.0 37 99.750 0.000 0.0 154.0 0.0 42 102.300 0.000 0.0 392.0 0.0 41 100.800 0.000 0.0 56.0 0.0 33 100.050 0.000 0.0 532.0 0.0 43 99.300 0.000 0.0 700.0 54	US/IL (m) E Area (ha) E Base Flow (l/s) E Units (l/s) Add Flow (l/s) P.Dep (m) P.Vel (m/s) 102.440 101.600 0.000 0.0 112.0 0.0 41 0.80 101.600 0.000 0.0 154.0 0.0 37 1.01 99.750 0.000 0.0 392.0 0.0 41 1.33 102.300 0.000 0.0 392.0 0.0 41 1.13 100.800 0.000 0.0 56.0 0.0 33 0.94 100.050 0.000 0.0 532.0 0.0 43 1.20 99.300 0.000 0.0 700.0 0.0 54 0.94	US/IL (m) E Area (ha) E Base Flow (l/s) E Units (l/s) Add Flow (mm) P.Dep (m/s) P.Vel (m/s) Vel (m/s) 102.440 101.600 99.750 0.000 0.000 0.0 0.00 112.0 0.00 0.0 0.0 41 0.80 1.38 1.38 1.86 99.750 0.000 0.00 154.0 0.0 42 0.83 1.41 102.300 0.000 0.0 392.0 0.0 41 1.13 1.94 100.800 0.000 0.0 56.0 0.0 33 0.94 1.86 100.050 0.000 0.0 532.0 0.0 43 1.20 2.03 99.300 0.000 0.0 56.0 0.0 39 0.77 1.37 98.901 0.000 0.0 700.0 0.0 54 0.94 1.36	US/IL (m) E Area (ha) E Base Flow (l/s) E Units (l/s) Add Flow (m) P.Dep (m) P.Vel (m/s) Vel (m/s) Cap (l/s) 102.440 (n) 0.000 0.00 112.0 0.0 41 0.80 1.38 54.8 101.600 0.000 0.00 154.0 0.0 37 1.01 1.86 73.8 99.750 0.000 0.00 154.0 0.0 42 0.83 1.41 56.2 102.300 0.000 0.0 392.0 0.0 41 1.13 1.94 77.1 100.800 0.000 0.0 56.0 0.0 33 0.94 1.86 73.9 100.050 0.000 0.0 532.0 0.0 43 1.20 2.03 80.6 99.300 0.000 0.0 56.0 0.0 39 0.77 1.37 54.6 98.901 0.000 0.0 700.0 0.0 54 0.94 1.36 54.2	US/IL (m) E Area (ha) E Base Flow (l/s) E Units Add Flow (l/s) P.Dep (mm) P.Vel (m/s) Vel (m/s) Cap (l/s) Flow (l/s) 102.440 0.000 0.00 112.0 0.0 41 0.80 1.38 54.8 4.0 101.600 0.000 0.00 154.0 0.0 37 1.01 1.86 73.8 4.4 99.750 0.000 0.00 154.0 0.0 42 0.83 1.41 56.2 4.4 102.300 0.000 0.0 392.0 0.0 41 1.13 1.94 77.1 5.7 100.800 0.000 0.0 56.0 0.0 33 0.94 1.86 73.9 3.5 100.050 0.000 0.0 532.0 0.0 43 1.20 2.03 80.6 6.3 99.300 0.000 0.0 56.0 0.0 39 0.77 1.37 54.6 3.5 98.901 0.000 <t< td=""></t<>

DBFL Con	nsulti	ng En	ginee	rs								Page 2
Ormond H	House					17002	24					
Upper Or	rmond	Quay				Newca	astle					
Dublin '	7					Foul	Netwo	rk				Micco
Date 02,	/07/20	19				Desid	ned b					
File 170	0024-	Foul	and S	torm		Checl	ked by	NCG				nginga
Innovyze	9				[Netwo	ork 20	18.1				
			Netw	ork D	esic	n Tal	ole fo	r Fou	ıl -	Unit		
PN	Length	Fall	Slope	Area	Unit	s I	Base	k	HYD	DIA	Section Ty	pe Auto
	(m)	(m)	(1:X)	(ha)		FLOV	/ (1/s)	(mm)	SECT	(mm)		Design
1.003	32.490	0.430	75.6	0.000	28.	0	0.0	1.500	0	225	Pipe/Condu	it 🔒
1.004	44.495	0.560	79.5	0.000	42.	0	0.0	1.500	0	225	Pipe/Condu	it 🔒
1.005	11.208	0.150	74.7	0.000	0.	0	0.0	1.500	0	225	Pipe/Condu	it 🔒
1.006	10.664	0.140	76.2	0.000	0.	0	0.0	1.500	0	225	Pipe/Condu	it 🔒
1.007	19.279	0.250	77.1	0.000	28.	0	0.0	1.500	0	225	Pipe/Condu	it 🔒
5.000	82.791	1.750	47.3	0.000	112.	0	0.0	1.500	0	225	Pipe/Condu	it. 🔺
5.001	71.726	1.630	44.0	0.000	126.	0	0.0	1.500	0	225	Pipe/Condu	it 🔒
												•
6.000	49.813	1.100	45.3	0.000	196.	0	0.0	1.500	0	225	Pipe/Condu	it 🔒
7 000	34 656	0 300	115 5	0 000	420	0	0 0	1 500	0	225	Pine/Condu	i+ 🛕
1.000	54.000	0.000	110.0	0.000	120.	0	0.0	1.000	0	225	r ipe/ condu	10 U
6.001	75.672	0.946	80.0	0.000	168.	0	0.0	1.500	0	225	Pipe/Condu	it 🔒
6.002	59.722	1.150	51.9	0.000	280.	0	0.0	1.500	0	225	Pipe/Condu	it 🧸
6.003	3.229	0.069	46.8	0.000	0.	0	0.0	1.500	0	225	Pipe/Condu	it 🥉
E 000	00 000	1 425	E7 /	0 000	1 C O	0	0 0	1 500		225	Dime / Constant	
5.002	02.330	1.435	J/.4	0.000	⊥ю8.	U	0.0	1.300	0	225	Pipe/Condu	11 👹
1.008	44.775	0.620	72.2	0.000	84.	0	0.0	1.500	0	225	Pipe/Condu	it 🔒

<u>Network Results Table</u>

PN	US/IL	Σ Area	Σ Base	Σ Units	Add Flow	P.Dep	P.Vel	Vel	Cap	Flow	
	(m)	(na)	FIOW (1/S)		(1/S)	(mm)	(m/s)	(m/s)	(1/S)	(1/S)	
1.003	98.130	0.000	0.0	882.0	0.0	58	0.94	1.32	52.5	7.6	
1.004	97.700	0.000	0.0	924.0	0.0	59	0.93	1.29	51.2	7.8	
1.005	97.140	0.000	0.0	924.0	0.0	58	0.95	1.33	52.8	7.8	
1.006	96.990	0.000	0.0	924.0	0.0	59	0.94	1.32	52.3	7.8	
1.007	96.850	0.000	0.0	952.0	0.0	59	0.94	1.31	52.0	7.9	
5.000	102.750	0.000	0.0	112.0	0.0	38	0.92	1.67	66.5	4.0	
5.001	101.000	0.000	0.0	238.0	0.0	41	1.00	1.73	68.9	4.9	
6.000	101.300	0.000	0.0	196.0	0.0	40	0.97	1.71	67.9	4.6	
7.000	100.500	0.000	0.0	420.0	0.0	56	0.75	1.07	42.5	5.8	
6.001	100.200	0.000	0.0	784.0	0.0	57	0.91	1.28	51.1	7.3	
6.002	99.254	0.000	0.0	1064.0	0.0	55	1.10	1.59	63.4	8.3	
6.003	98.104	0.000	0.0	1064.0	0.0	53	1.14	1.68	66.8	8.3	
5.002	98.035	0.000	0.0	1470.0	0.0	61	1.11	1.52	60.3	9.6	
1.008	96.600	0.000	0.0	2506.0	0.0	75	1.11	1.35	53.7	12.9	
			©19	82-2018	3 Innovy	ze					

DBFL Consulting Engineers									Pag	ge 3				
Ormond H	louse					170	024							
Upper Or	mond 🤉	Quay				New	cas	tle						
Dublin 7	,					Fou	l N	letwo:	rk				N/	icco
Date 02/	07/201	9				Des	ian	ed b	V FNS					itio
File 170)024- F		and St	orm		Cho		d by	NCG				D	alnage
						10 1					2			
Innovyze		Net	wor	CK 20.	18.1									
				_				_		_				
			<u>Netwo</u>	ork De	<u>esig</u>	nТ	'abl	e to	<u>r Fou</u>	<u> </u>	<u>Jnit</u>			
				_			_						_	
PN	Length	Fall	Slope	Area	Unit	s.	Ba	use	k ()	HYD	DIA	Section	туре	Auto
	(m)	(m)	(1:X)	(na)		F	TOM	(1/5)	(nun)	SECT	(11111)			Design
8.000	32.325	0.520	62.2	0.000	56.	0		0.0	1.500	0	225	Pipe/Con	duit	A
														-
1.009	27.278	0.180	151.5	0.000	28.	0		0.0	1.500	0	225	Pipe/Con	duit	0
0.000	67 700	0 000	75 2	0 000	154	0		0 0	1 500	-	225	Ding (Con	d	•
9.000	01.109	0.900	13.3	0.000	104.	0		0.0	1.500	0	223	Pipe/con	aurt	•
1.010	45.810	1.250	36.6	0.000	84.	0		0.0	1.500	0	225	Pipe/Con	duit	A
1.011	5.877	0.150	39.2	0.000	14.	0		0.0	1.500	0	225	Pipe/Con	duit	Ă
1.012	33.891	1.000	33.9	0.000	56.	0		0.0	1.500	0	225	Pipe/Con	duit	Ă
1.013	52.472	1.100	47.7	0.000	126.	0		0.0	1.500	0	225	Pipe/Con	duit	ă
1.014	6.348	0.100	63.5	0.000	Ο.	0		0.0	1.500	0	225	Pipe/Con	duit	Ā
1.015	66.721	1.700	39.2	0.000	140.	0		0.0	1.500	0	225	Pipe/Con	duit	ě
														_
10.000	61.934	1.600	38.7	0.000	112.	0		0.0	1.500	0	225	Pipe/Con	duit	0

0	Pipe/Conduit	225	0	0.0 1.500	0.0	0.000	37.3	0.500	18.625	1.016
8	Pipe/Conduit	225	0	0.0 1.500	210.0	0.000	66.4	0.516	34.283	11.000
8	Pipe/Conduit	225	0	0.0 1.500	98.0	0.000	80.1	0.470	37.633	12.000
0	Pipe/Conduit	225	0	0.0 1.500	42.0	0.000	21.8	0.970	21.105	13.000

Network Results Table

PN	US/IL (m)	Σ Area (ha)	Σ Base Flow (l/s)	Σ Units	Add Flow (l/s)	P.Dep (mm)	P.Vel (m/s)	Vel (m/s)	Cap (1/s)	Flow (1/s)	
8.000	96.500	0.000	0.0	56.0	0.0	37	0.80	1.46	57.9	3.5	
1.009	95.980	0.000	0.0	2590.0	0.0	93	0.85	0.93	37.0	13.1	
9.000	96.700	0.000	0.0	154.0	0.0	44	0.80	1.32	52.6	4.4	
1.010	95.800	0.000	0.0	2828.0	0.0	65	1.45	1.90	75.5	13.9	
1.011	94.550	0.000	0.0	2842.0	0.0	67	1.42	1.84	73.0	13.9	
1.012	94.400	0.000	0.0	2898.0	0.0	64	1.49	1.98	78.5	14.1	
1.013	93.400	0.000	0.0	3024.0	0.0	71	1.33	1.66	66.2	14.5	
1.014	92.300	0.000	0.0	3024.0	0.0	77	1.20	1.44	57.3	14.5	
1.015	92.200	0.000	0.0	3164.0	0.0	69	1.44	1.84	73.0	14.9	
10.000	92.100	0.000	0.0	112.0	0.0	36	0.98	1.85	73.5	4.0	
1.016	90.500	0.000	0.0	3276.0	0.0	69	1.48	1.88	74.9	15.2	
11.000	97.100	0.000	0.0	210.0	0.0	44	0.85	1.41	56.0	4.7	
12.000	98.300	0.000	0.0	98.0	0.0	42	0.76	1.28	51.0	3.9	
13.000	98.800	0.000	0.0	42.0	0.0	28	1.13	2.47	98.1	3.3	
			©19	82-2018	Innovy	ze					

DBFL Con	sultir	ng Eng	ginee	ſs								Pag	re 4
Ormond H	louse				1	170024							
Upper Or	mond Ç	Quay			N	Newcas	tle						
Dublin 7		-			E	Foul N	letwo	rk				N / I	
Date 02/	07/201	19			Г	Design	ed by	v FNS				IVII	ιu
File 170	024- 5		and St	orm		- hocke	d by	NCC				Dr	ainage
	021 1	.our c					$\frac{1}{1}$	10 1					
THHOVYZE					r	Networ	.K. 20.	10.1					
			Netwo	ork De	esiar	n Tabl	e fo	r Fou	1 – t	Jnit.			
PN	Length	Fall	Slope	Area	Units	s Ba	se	k	HYD	DIA	Section Ty	ype	Auto
	(m)	(m)	(1:X)	(ha)		Flow	(l/s)	(mm)	SECT	(mm)			Design
12.001	33.736	1.246	27.1	0.000	0.0	0	0.0	1.500	0	225	Pipe/Condu	uit	0
11.001	60.787	0.614	99.0	0.000	56.0	0	0.0	1.500	0	225	Pipe/Condu	uit	•
11.002	44.647	0.650	68.7	0.000	280.0	0	0.0	1.500	0	225	Pipe/Condu	uit	•
11.003	6.435	0.160	40.2	0.000	0.0	0	0.0	1.500	0	225	Pipe/Condu	uit	•
11.004	83.069	2.160	38.5	0.000	350.0	0	0.0	1.500	0	225	Pipe/Condu	uit	e
11.005	4.483	0.150	29.9	0.000	0.0	0	0.0	1.500	0	225	Pipe/Condu	uit	0
11.006	30.785	0.850	36.2	0.000	112.0	0	0.0	1.500	0	225	Pipe/Condu	uit	8
14.000	32.051	0.916	35.0	0.000	70.0	0	0.0	1.500	0	225	Pipe/Condu	ii+	۵
14 001	5 178	0 130	39.8	0 000	28 (0	0 0	1 500	0	225	Pipe/Condu	iit	_
14 002	49 112	1 403	35 0	0 000	266 (0	0.0	1 500	0	225	Pipe/Condu	iit	
14 003	33 904	1 077	31 5	0 000	112 (0	0.0	1 500	0	225	Pipe/Condu	11+	
14.003	5 283	0 160	33 0	0.000	112.0	0	0.0	1 500	0	225	Pipe/Condu	11+	
14.005	31.189	1.489	20.9	0.000	0.0	0	0.0	1.500	0	225	Pipe/Condu	uit	
											1 .,		•
15.000	40.357	0.475	85.0	0.000	126.0	0	0.0	1.500	0	225	Pipe/Condu	uit	0
14.006	72.402	1.125	64.4	0.000	182.0	0	0.0	1.500	0	225	Pipe/Condu	uit	•
11.007	3.895	0.050	77.9	0.000	0.0	0	0.0	1.500	0	225	Pipe/Condu	uit	•
				Ne	twor	<u>k Res</u>	ults	Table	2				
PI	N US/	ΊLΣ	Area	Σ Base	Σ	Units	Add Fl	Low P.I	Dep P.	Vel	Vel Cap	F	ow
	(n	ı) (l	ha) Fi	Low (l/	/s)		(1/s) (m	m) (n	l/s)	(m/s) (l/s)) (1	/s)

12.001	97.830	0.000	0.0	140.0	0.0	34	1.13	2.21	87.9	4.3	
11.001	96.584	0.000	0.0	406.0	0.0	54	0.79	1.15	45.9	5.7	
11.002	95.970	0.000	0.0	686.0	0.0	54	0.95	1.39	55.1	6.9	
11.003	95.320	0.000	0.0	686.0	0.0	47	1.14	1.81	72.1	6.9	
11.004	95.160	0.000	0.0	1036.0	0.0	51	1.22	1.85	73.7	8.2	
11.005	93.000	0.000	0.0	1036.0	0.0	48	1.34	2.10	83.7	8.2	
11.006	92.850	0.000	0.0	1148.0	0.0	51	1.27	1.91	76.0	8.6	
14.000	96.800	0.000	0.0	70.0	0.0	33	0.99	1.94	77.3	3.6	
14.001	95.884	0.000	0.0	98.0	0.0	36	0.97	1.82	72.4	3.9	
14.002	95.754	0.000	0.0	364.0	0.0	41	1.12	1.94	77.3	5.5	
14.003	94.351	0.000	0.0	476.0	0.0	42	1.20	2.05	81.5	6.0	
14.004	93.274	0.000	0.0	476.0	0.0	42	1.18	2.00	79.6	6.0	
14.005	93.114	0.000	0.0	476.0	0.0	38	1.38	2.51	100.0	6.0	
15.000	92.100	0.000	0.0	126.0	0.0	44	0.75	1.25	49.5	4.1	
14.006	91.625	0.000	0.0	784.0	0.0	54	0.98	1.43	56.9	7.3	
11.007	90.500	0.000	0.0	1932.0	0.0	71	1.04	1.30	51.7	11.1	
			<u>0100</u>	2_2018 Tpr	011170						-
			WI 20	$\angle \angle \angle \vee \perp \bigcirc \perp \square$							

DBFL Consulting Engineers				
Ormond House	170024			
Upper Ormond Quay	Newcastle			
Dublin 7	Foul Network	Micro		
Date 02/07/2019	Designed by FNS			
File 170024- Foul and Storm	Checked by NCG	Diamage		
Innovyze	Network 2018.1			

<u>Network Design Table for Foul - Unit</u>

PN	Length (m)	Fall (m)	Slope (1:X)	Area (ha)	Units	Ba Flow	ase (l/s)	k (mm)	HYD SECT	DIA (mm)	Section Type	Auto Design
11.008	50.404	0.450	112.0	0.000	0.0		0.0	1.500	0	225	Pipe/Conduit	
1.017 1.018	4.018 33.433	0.115 0.510	34.9 65.6	0.000	0.0		0.0	1.500 1.500	0	225 225	Pipe/Conduit Pipe/Conduit	⊕ ₿
16.000	63.219	1.095	57.7	0.000	140.0		0.0	1.500	0	225	Pipe/Conduit	0
1.019 1.020 1.021 1.022 1.023 1.024 1.025 1.026 1.027	16.403 20.355 10.803 29.144 17.475 18.651 8.053 88.505 68.330	0.475 0.370 0.139 0.374 0.224 0.239 0.114 1.440 0.228	34.5 55.0 77.7 77.9 78.0 78.0 70.6 61.5 299.7	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.0 0.0 0.0 420.0 0.0 0.0 0.0		0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	1.500 1.500 1.500 1.500 1.500 1.500 1.500 1.500		225 225 225 225 225 225 225 375 375	Pipe/Conduit Pipe/Conduit Pipe/Conduit Pipe/Conduit Pipe/Conduit Pipe/Conduit Pipe/Conduit Pipe/Conduit	
1.028 1.029 1.030 1.031	61.041 87.926 50.839 98.278	0.207 0.464 0.269 0.392	294.9 189.5 189.0 250.7	0.000 0.000 0.000 0.000	0.0 0.0 0.0 0.0		0.0 0.0 0.0 0.0	1.500 1.500 1.500 1.500	0 0 0	375 375 375 375	Pipe/Conduit Pipe/Conduit Pipe/Conduit Pipe/Conduit	⊕ ⊕ ⊕

Network Results Table

PN	US/IL (m)	Σ Area (ha)	Σ Base Flow (l/s)	Σ Units	Add Flow (1/s)	P.Dep (mm)	P.Vel (m/s)	Vel (m/s)	Cap (1/s)	Flow (l/s)
11.008	90.450	0.000	0.0	1932.0	0.0	78	0.91	1.08	43.1	11.1
1.017 1.018	90.000 89.885	0.000 0.000	0.0	5208.0 5208.0	0.0	80 96	1.66 1.32	1.95 1.42	77.4 56.4	21.2 21.2
16.000	90.470	0.000	0.0	140.0	0.0	41	0.87	1.51	60.1	4.3
1.019	89.375	0.000	0.0	5348.0	0.0	81	1.67	1.96	77.8	21.6
1.020	88.900	0.000	0.0	5348.0	0.0	92	1.41	1.55	61.6	21.6
1.021	88.539	0.000	0.0	5348.0	0.0	101	1.24	1.30	51.8	21.6
1.022	88.401	0.000	0.0	5348.0	0.0	101	1.24	1.30	51.7	21.6
1.023	88.027	0.000	0.0	5348.0	0.0	101	1.24	1.30	51.7	21.6
1.024	87.803	0.000	0.0	5768.0	0.0	104	1.26	1.30	51.7	22.6
1.025	87.564	0.000	0.0	5768.0	0.0	101	1.31	1.37	54.3	22.6
1.026	87.300	0.000	0.0	5768.0	0.0	80	1.32	2.05	226.1	22.6
1.027	85.860	0.000	0.0	5768.0	0.0	120	0.75	0.92	102.1	22.6
1.028	85.632	0.000	0.0	5768.0	0.0	119	0.75	0.93	102.9	22.6
1.029	85.425	0.000	0.0	5768.0	0.0	106	0.88	1.16	128.5	22.6
1.030	84.961	0.000	0.0	5768.0	0.0	106	0.88	1.17	128.7	22.6
1.031	84.692	0.000	0.0	5768.0	0.0	114	0.80	1.01	111.7	22.6

©1982-2018 Innovyze

Appendix K IRISH WATER DESIGN ACCEPTANCE & COF (CONFIRMATION OF FEASIBILITY)

CAIRN HOMES CONSTRUCTION LTD c/o NOEL GORMAN ORMOND HOUSE ORMOND QUAY UPPER DUBLIN 7

Uisce Éireann Bosca OP 6000 Baile Átha Cliath 1 Éire

Irish Water PO Box 6000 Dublin 1 Ireland

T: +353 1 89 25000 F: +353 1 89 25001 www.water.ie

11 October 2018

Dear Sir/Madam,

Re: Customer Reference No 849834035 pre-connection enquiry - Subject to contract | Contract denied

Irish Water has reviewed your pre-connection enquiry in relation to water and wastewater connections at NEWCASTLE SOUTH, PHASE 1 CO. DUBLIN. Based upon the details that you have provided with your pre-connection enquiry and on the capacity currently available in the network(s), as assessed by Irish Water, we wish to advise you that, subject to a valid connection agreement being put in place, your proposed connection to the Irish Water network(s) can be facilitated.

In the case of wastewater connections this assessment does not confirm that a gravity connection is achievable. Therefore a suitably sized pumping station may be required to be installed on your site. All infrastructure should be designed and installed in accordance with the Irish Water Code of Practice.

Water:

New connection to the existing network is feasible with following conditions:

- The connection must be made from the 450mm DI trunk main on the east of the Development and should include installation of a 150mm diameter offtake with a PRV controller.
- A bulk meter and associated telemetry system are also required for the Development.

Wastewater:

Existing 225mm foul sewer on the Main Street/R120 Road adjacent to the site and Newcastle Pumping Station downstream of the site have capacity deficiency. It will be necessary to carry out further detailed study and investigations to confirm the available capacity and to determine the full extent of any upgrades which may be required to be completed to Irish Water Infrastructure, prior to agreeing to the proposed connection. Irish Water currently does not have any plans to extend or commence upgrade works to its network in this area.

Strategic Housing Development

Irish Water notes that the scale of this development dictates that it is subject to the Strategic Housing Development planning process. Therefore:

A. In advance of submitting your full application to An Bord Pleanala for assessment, you must have reviewed this development with Irish Water and received a Statement of Design Acceptance in relation to the layout of water and wastewater services. All infrastructure should be designed and installed in accordance with the Irish Water Codes of Practice and Standard Details.

B. You are advised that this correspondence does not constitute an offer in whole or in part to provide a connection to any Irish Water infrastructure and is provided subject to a connection agreement being signed and appropriate connection fee paid at a later date.

C. In advance of submitting this development to An Bord Pleanala for full assessment, the Developer is required to have entered into a Project Works Services Agreement to deliver studies to confirm the available capacity and to determine the full extent of any upgrades which may be required to be completed to Irish Water infrastructure. D. In advance of submitting this development to An Bord Pleanala for full assessment, the Developer is required to have entered into a Project Works Services Agreement to deliver infrastructure upgrades to facilitate the connection of the development to Irish Water infrastructure.

A connection agreement can be applied for by completing the connection application form available at **www.water.ie/connections**. Irish Water's current charges for water and wastewater connections are set out in the Water Charges Plan as approved by the Commission for Regulation of Utilities.

If you have any further questions, please contact Marina Byrne from the design team on 018925991 or email mzbyrne@water.ie. For further information, visit **www.water.ie/connections**

Yours sincerely,

Maria O'Dwyer Connections and Developer Services

Stiúrthóirí / Directors: Mike Quinn (Chairman), Jerry Grant, Cathal Marley, Brendan Murphy, Michael G. O'Sullivan Oifig Chláraithe / Registered Office: Teach Colvill, 24-26 Sráid Thalbóid, Baile Átha Cliath 1, D01 NP86 / Colvill House, 24-26 Talbot Street, Dublin 1, D01 NP86 Is cuideachta ghníomhaíochta ainmnithe atá faoi theorainn scaireanna é Uisce Éireann / Irish Water is a designated activity company, limited by shares. Uimhir Chláraithe in Éirinn / Registered in Ireland No.: 530363 Cairn Homes Construction Limited c/o Noel Gorman, DBFL Consulting Engineers, Ormond House, Ormond Quay Upper, Dublin 7

12 July 2019

Re: Design Submission for Development at Newcastle South, Phase 1, Co. Dublin (the "Development") (the "Design Submission") / 849834035.

Dear Noel Gorman,

Many thanks for your recent Design Submission.

We have reviewed your proposal for the connection(s) at the Development. Based on the information provided, which included the documents outlined in Appendix A to this letter, Irish Water has no objection to your proposals.

This letter does not constitute an offer, in whole or in part, to provide a connection to any Irish Water infrastructure. Before you can connect to our network you must sign a connection agreement with Irish Water. This can be applied for by completing the connection application form at <u>www.water.ie/connections</u>. Irish Water's current charges for water and wastewater connections are set out in the Water Charges Plan as approved by the Commission for Regulation of Utilities (CRU) (<u>https://www.cru.ie/document_group/irish-waters-water-charges-plan-2018/</u>).

You the Customer (including any designers/contractors or other related parties appointed by you) is entirely responsible for the design and construction of all water and/or wastewater infrastructure within the Development which is necessary to facilitate connection(s) from the boundary of the Development to Irish Water's network(s) (the "**Self-Lay Works**"), as reflected in your Design Submission. Acceptance of the Design Submission by Irish Water does not, in any way, render Irish Water liable for any elements of the design and/or construction of the Self-Lay Works.

If you have any further questions, please contact your Irish Water Representative

Name: Marina Byrne Phone: 01 8925991 Email: mzbyrne@water.ie

Yours sincerely,

M Duge

Maria O'Dwyer Connections and Developer Services

Uisce Éireann Bosca OP 448 Oifig Sheachadta na Cathrach Theas Cathair Chorcaí

Irish Water PO Box 448 South City Delivery Office Cork City

www.water.ie

Appendix A

Document Title & Revision

- 170024-3001-B Site Services Layout Sheet 1
- 170024-3002-B Site Services Layout Sheet 2
- 170024-3011-B Water Mains Layout Sheet 1
- 170024-3012-B Water Mains Layout Sheet 2
- 170024-3025 Longitudinal Sections Through Foul Sewer Sheet 1
- 170024-3026 Longitudinal Sections Through Foul Sewer Sheet 2
- 170024-3027 Longitudinal Sections Through Foul Sewer Sheet 3
- 170024-3028 Longitudinal Sections Through Foul Sewer Sheet 4

Standard Details/Code of Practice Exemption: N/A

For further information, visit <u>www.water.ie/connections</u>

<u>Notwithstanding any matters listed above, the Customer (including any appointed</u> <u>designers/contractors, etc.) is entirely responsible for the design and construction of the</u> <u>Self-Lay Works.</u> Acceptance of the Design Submission by Irish Water will not, in any way, render Irish Water liable for any elements of the design and/or construction of the Self-Lay Works.